Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorChao-Chen Kuoen
dc.contributor.author郭朝琛zh_TW
dc.date.accessioned2021-05-19T17:40:30Z-
dc.date.available2024-08-15
dc.date.available2021-05-19T17:40:30Z-
dc.date.copyright2019-08-15
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citation1. Teraoka I. Polymer solutions an introduction to physical properties. New York: Wiley; 2002.
2. 林宗賢.以布朗動態法模擬與優化電泳拉伸DNA之策略:國立臺灣大學化學工程學研究所;2011.
3. Dorfman KD, Brenner H. Convective dispersion without molecular diffusion. Physica A: Statistical Mechanics and its Applications. 2003/05/01/ 2003;322:180-194.
4. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953.
5. Öttinger HC. Stochastic Processes, Polymer Dynamics, and Fluid Mechanics. Stochastic Processes in Polymeric Fluids: Springer; 1996:1-15.
6. Hiemenz PC. Polymer chemistry. 2nd ed. ed. Hoboken: CRC Press; 2007.
7. 黃秋德.以布朗動態法模擬DNA在微流道中受流場拉伸之研究:國立臺灣大學化學工程學研究所;2013.
8. Jendrejack RM, Schwartz DC, de Pablo JJ, Graham MD. Shear-induced migration in flowing polymer solutions: Simulation of long-chain deoxyribose nucleic acid in microchannels. Journal of Chemical Physics. Feb 2004;120(5):2513-2529.
9. Tang J, Du N, Doyle PS. Compression and self-entanglement of single DNA molecules under uniform electric field. Proceedings of the National Academy of Sciences of the United States of America. Sep 2011;108(39):16153-16158.
10. Isambert H, Ajdari A, Viovy JL, Prost J. Electrohydrodynamic patterns in charged colloidal solutions. Physical Review Letters. Feb 1997;78(5):971-974.
11. Isambert H, Ajdari A, Viovy JL, Prost J. Electrohydrodynamic patterns in macroion dispersions under a strong electric field. Physical Review E. Nov 1997;56(5):5688-5704.
12. Pohl HA. The Motion and Precipitation of Suspensoids in Divergent Electric Fields. Journal of Applied Physics. 1951;22(7):869-871.
13. Chen QY, Yuan YJ. A review of polystyrene bead manipulation by dielectrophoresis. Rsc Advances. Feb 2019;9(9):4963-4981.
14. Pethig R. Dielectrophoresis: Using inhomogeneous AC electrical fields to separate and manipulate cells. Critical Reviews in Biotechnology. 1996;16(4):331-348.
15. Pohl HA. Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields. Cambridge ;: Cambridge University Press; 1978.
16. Regtmeier J, Eichhorn R, Bogunovic L, Ros A, Anselmetti D. Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry. Sep 2010;82(17):7141-7149.
17. Regtmeier J, Eichhorn R, Viefhues M, Bogunovic L, Anselmetti D. Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis. Sep 2011;32(17):2253-2273.
18. Martinez-Duarte R, Camacho-Alanis F, Renaud P, Ros A. Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis. Apr 2013;34(7):1113-1122.
19. Tietz D. Nucleic acid electrophoresis: Springer Science & Business Media; 2012.
20. Olivera BM, Baine P, Davidson N. Electrophoresis of the Nucleic Acids. Biopolymers. 1964;2(3):245-257.
21. Southern EM, Anand R, Brown WRA, Fletcher DS. A Model for the Separation of Large DNA-Molecules by Crossed-Field Gel-Electrophoresis. Nucleic Acids Research. Aug 1987;15(15):5925-5943.
22. Lopez-Canovas L, Benitez MBM, Isidron JAH, Soto EF. Pulsed Field Gel Electrophoresis: Past, present, and future. Analytical Biochemistry. May 2019;573:17-29.
23. Dill KA. Theory for The Separation of Very Large DNA-Molecules by Radial Migration. Biophysical Chemistry. 1979;10(3-4):327-334.
24. Jiang L, Larson RG. Multiscale modeling of polymer flow-induced migration and size separation in a microfluidic contraction flow. Journal of Non-Newtonian Fluid Mechanics. Sep 2014;211:84-98.
25. Hajizadeh E, Larson RG. Stress-gradient-induced polymer migration in Taylor-Couette flow. Soft Matter. Sep 2017;13(35):5942-5949.
26. Doyle PS, Bibette J, Bancaud A, Viovy JL. Self-assembled magnetic matrices for DNA separation chips. Science. Mar 2002;295(5563):2237-2237.
27. Cho J, Dorfman KD. Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array. Journal of Chromatography A. Aug 2010;1217(34):5522-5528.
28. Thomas JDP, Dorfman KD. Tilted post arrays for separating long DNA. Biomicrofluidics. May 2014;8(3).
29. 陳致安.以布朗動態法模擬DNA於圓柱陣列微流道中之電泳分離:國立臺灣大學化學工程學研究所;2015.
30. Chen Z, Dorfman KD. Comparison of microfabricated hexagonal and lamellar post arrays for DNA electrophoresis. Electrophoresis. Mar 2014;35(5):654-661.
31. Morgan H, Hughes MP, Green NG. Separation of submicron bioparticles by dielectrophoresis. Biophysical Journal. Jul 1999;77(1):516-525.
32. Asbury CL, Diercks AH, van den Engh G. Trapping of DNA by dielectrophoresis. Electrophoresis. Aug 2002;23(16):2658-2666.
33. Chou CF, Tegenfeldt JO, Bakajin O, et al. Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophysical Journal. Oct 2002;83(4):2170-2179.
34. Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC. Separation of Human Breast-Cancer Cells from Blood by Differential Dielectric Affinity. Proceedings of the National Academy of Sciences of the United States of America. Jan 1995;92(3):860-864.
35. Regtmeier J, Duong TT, Eichhorn R, Anselmetti D, Ros A. Dielectrophoretic manipulation of DNA: Separation and polarizability. Analytical Chemistry. May 2007;79(10):3925-3932.
36. Viefhues M, Regtmeier J, Anselmetti D. Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format. Analyst. 2013;138(1):186-196.
37. Jones PV, Salmon GL, Ros A. Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis. Analytical Chemistry. Feb 2017;89(3):1531-1539.
38. 舒稚翔.結合圓柱陣列與漸擴微流道以正向力分離DNA之研究:國立臺灣大學工學院化學工程學系暨研究所; 2018.
39. 劉貞汝.結合圓柱陣列與漸擴微流道以電泳分離 DNA之研究:國立臺灣大學工學院化學工程學系暨研究所; 2017.
40. Larson RG. The rheology of dilute solutions of flexible polymers: Progress and problems. Journal of Rheology. Jan-Feb 2005;49(1):1-70.
41. Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR. Beyond Gel Electrophoresis: Microfluidic Separations, Fluorescence Burst Analysis, and DNA Stretching. Chemical Reviews. Apr 2013;113(4):2584-2667.
42. Randall GC, Doyle PS. Collision of a DNA polymer with a small obstacle. Macromolecules. Oct 2006;39(22):7734-7745.
43. Larson RG. The rheology of dilute solutions of flexible polymers: Progress and problems. Journal of Rheology. Jan-Feb 2005;49(1):1-70.
44. Kim JM, Doyle PS. A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields. Journal of Chemical Physics. Aug 2006;125(7).
45. Kubo R, Toda M, Hashitsume N. Statistical physics II: nonequilibrium statistical mechanics. Vol 31: Springer Science & Business Media; 2012.
46. Grassia P, Hinch EJ. Computer simulations of polymer chain relaxation via Brownian motion. Journal of Fluid Mechanics. Feb 1996;308:255-288.
47. Öttinger HC. Stochastic Processes, Polymer Dynamics, and Fluid Mechanics. Stochastic Processes in Polymeric Fluids: Springer; 1996:1-15.
48. Marko JF, Siggia ED. Stretching dna. Macromolecules. 1995;28(26):8759-8770.
49. Jendrejack RM, de Pablo JJ, Graham MD. Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions. Journal of Chemical Physics. May 2002;116(17):7752-7759.
50. Jendrejack RM, Schwartz DC, Graham MD, de Pablo JJ. Effect of confinement on DNA dynamics in microfluidic devices. Journal of Chemical Physics. Jul 2003;119(2):1165-1173.
51. Heyes DM, Branka AC. Brownian Dynamics Simulations of Model Near-Hard-Sphere Suspensions. Physics and Chemistry of Liquids. 1993;26(3):153-160.
52. Segerlind LJ. Applied finite element analysis. Vol 316: Wiley New York; 1976.
53. Hsieh CC, Lin TH. Simulation of conformational preconditioning strategies for electrophoretic stretching of DNA in a microcontraction. Biomicrofluidics. Dec 2011;5(4).
54. Cho J, Kumar S, Dorfman KD. Electrophoretic collision of a DNA molecule with a small elliptical obstacle. Electrophoresis. Mar 2010;31(5):860-867.
55. Huang CD, Kang DY, Hsieh CC. Simulations of DNA stretching by flow field in microchannels with complex geometry. Biomicrofluidics. Jan 2014;8(1).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7239-
dc.description.abstractDNA分離於生物及醫學上的應用非常廣泛,相比傳統方法,透過微流道分離DNA具有便利、快速且成本低廉等特性,如今已成為研究趨勢。我們在過去的實驗裡發現DNA於漸縮-漸擴型通道中漸縮區前方加入圓柱陣列後,DNA產生向通道側壁偏移之現象,在無圓柱陣列之通道則觀察不到此現象。本研究以布朗動態法(Brownian Dynamics)模擬DNA於漸縮-漸擴型微流道的電泳行為,進一步了解DNA於通道中受正向應力遷移之現象,並提出以正向應力驅動DNA電泳分離之微流體通道設計。
我們首先模擬DNA於重覆漸縮-漸擴型通道的電泳行為,並探討圓柱陣列對偏移現象之影響。我們發現在通道中加入圓柱陣列後,掛勾於圓柱上的DNA會受到電場作用而伸展,再加上通過通道漸縮區時,DNA會更進一步受電場梯度作用而拉長,產生明顯的正向應力偏移效果。另外,為了比較電場與流場驅動對DNA遷移效果之影響,我們改以流場驅動DNA後,由於流體動力作用產生空乏層,導致DNA不容易停留於通道兩側牆壁區域,使偏移效果較電場為差。
接著為了詳細研究通道形狀對正向應力之影響,我們分別改變通道漸縮區與漸擴區形狀後,發現透過黛博拉數(De)可以預測不同分子量之DNA在不同形狀參數通道中是否會發生受正向應力偏移現象。若De>1,DNA會受正向應力偏移;若De<1則DNA不受影響,於通道中呈現平均分布。另外,我們利用此結果於重覆漸縮-漸擴型通道前方加入黛博拉數較高之通道使DNA預先產生偏移,能使DNA於重複通道入口處之兩側牆壁注入,更進一步提升分離效果。
此外,一般常用分岔型通道收集來通道中不同側向位置之DNA。而在我們的研究中,受到正向應力偏移之DNA會從靠近通道側壁之位置離開,因此我們透過三岔型通道於側邊通道收集受正向應力遷移之DNA。我們發現無論DNA分子量及電場大小,DNA皆會沿著電力線移動,故可以利用此現象估計分岔型通道收集DNA之效率。也可以透過調控側邊通道與中間通道電壓之比值來調控電力線之分布,能有效控制各分岔通道收集DNA之範圍。
雖然三岔型通道能有效於側邊通道收集受正向應力遷移之DNA,但不受正向應力遷移之DNA則因為布朗運動呈現平均分布,有部分同樣會從側邊通道離開,降低兩種DNA的分離效果。我們模擬利用負介電泳(nDEP)促使不受正向應力遷移之DNA向通道中央集中,並從三岔型通道之中間通道離開,透過控制介電泳大小能夠使受正向應力遷移之DNA仍然從側邊通道離開,進而達到幾乎完全分離之結果。
最後,我們嘗試單純利用正向應力分離多種DNA。為了達成此目的,我們設計連接兩段電場梯度不同之重覆漸縮-漸擴型通道以分離三種DNA。在第一段通道中分子量最大者De>1,受正向應力遷移從側邊通道離開;在第二段通道中,分子量次大者受正向應力遷移從側邊通道離開,分子量最小者則從中間通道離開。雖然側邊通道收集之DNA純度有限,仍可以透過側邊通道收集結果重複進入通道提高DNA純化效果。
由於實驗與模擬添加圓柱陣列後都能觀察到漸縮-漸擴型微流道中DNA受正向應力之偏移現象,希望能幫助預測此種通道實驗的結果趨勢,並提供分離方法設計之方向。
zh_TW
dc.description.abstractDNA separation and purification are widely used operations in biological and medical analyses. Compared with the traditional methods, DNA separation through microchannels by electrophoresis is more convenient and efficient. In the past experiments, we found that DNA migrated toward the convex wall as it passed through a converging-diverging microchannel. The migration was apparently driven by the normal stress, but it can only be observed when a post array was set at the inlet of the converging channel. In this study, Brownian Dynamics is used to simulate the behavior of DNA in microchannels to further understand the phenomenon. We also used the simulations to verify the design principles for improving the current device.
We first investigated how the post array affects the normal stress induced DNA migration. We found that DNA hooked by a post will be stretched by the electric field. Since the normal stress is larger for more stretched DNA, the normal stress induced DNA migration is enhanced due to the presence of the post array. On the other hand, we have also replaced electric field with flow field. Although the normal stress induced migration is still observed, it is less prominent in flow field than in electric field due to the depletion of DNA at the channel walls caused by the hydrodynamic interactions.
Second, we changed the shape of the converging and diverging channels to study the influence of the channel shape on the normal stress induced migration of DNA. We found that Deborah number (De) is a good indicator for the onset of the normal stress induced DNA migration. The migration only occurs for De>1 while DNA distributes evenly in the microchannel for De<1. We have applied this principle to design a pre-conditioning channel with higher De set in front of the separation channel. The separation efficiency of the device is clearly improved with the pre-conditioning channel.

Third, we considered how to collect DNA samples at the end of the separation channel. In literatures, branched channel is usually employed for this purpose. However, the detailed design of the branched outlet channel could strongly affect the separation results. We found from our simulations that DNA usually moves along the electric field line, despite its molecular weight and the electric field strength. Therefore, we can use a fixed branched outlet channel with tunable applied electric potential in each outlet reservoir to control the electric field lines and therefore to optimize the collection of the separated samples.
Although the normal stress induced DNA migration can be used to separate DNA with different sizes, the separation can never be complete. Thus, we simulated a special case that uses negative dielectophoresis (nDEP) to promote DNA moving away from the convex walls of the channel. Since the DEP force and the normal stress are competing, it is possible to find an optimal condition that could give a complete separation for a mixture of two different DNA samples.
To conclude, we have successfully simulated the normal stress induced DNA migration in a converging-diverging channel by using Brownian dynamics. The simulations have helped us to understand the phenomenon more deeply. Moreover, we have developed several strategies to improve the separation efficiency of the device. We shall perform experiments to verify these strategies and hopefully invent a better DNA separation method in the future.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:30Z (GMT). No. of bitstreams: 1
ntu-108-R06524012-1.pdf: 10178208 bytes, checksum: 352329f7042eb9c5811f1de83fb864ae (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 X
表目錄 XXI
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第2章 文獻回顧 2
2.1 DNA的物理性質 2
2.1.1 去氧核糖核苷酸( DNA ) 2
2.1.2 堅韌長度( Persistence Length ) 3
2.1.3 輪廓長度(Contour length) 3
2.1.4 鬆弛時間(Relaxation time) 3
2.2 線性高分子模型 4
2.2.1 Bead-Stick Model 5
2.2.2 Bead-Spring Model 6
2.3 高分子鏈 6
2.3.1 理想鏈(Ideal Chain) 7
2.3.2 真實鏈(Real Chain) 8
2.3.2.1 體積排斥(Excluded volume) 8
2.3.2.2 短距離作用與長距離作用 9
2.3.3 蠕蟲鏈 ( Worm-Like Chains) [6] 11
2.4 電場與流場之特殊效應 14
2.4.1 流體動力作用(Hydrodynamic interaction) 14
2.4.2 DNA 於高電場下之自纏繞現象(Self-Entaglement)[9] 16
2.4.3 介電泳(Dielectrophoresis, DEP) 18
2.5 電泳分離DNA之文獻回顧 22
2.5.1 傳統凝膠法(Gel Electrophoresis) 22
2.5.2 脈衝式凝膠電泳(Pulsed Field Gel Electrophoresis, PFGE) 24
2.5.3 徑向偏移(Radial Migration) 25
2.5.4 圓柱障礙物陣列微流道(Post Array) 31
2.5.5 介電泳分離 34
2.5.6 漸縮-漸擴型微流道以正向應力分離DNA[37] 39
2.5.7 DNA於微流道電泳之相關參數 42
2.5.7.1 匹列數(Péclet number, Pe) 42
2.5.7.2 黛博拉數(Deborah number, De) 43
2.5.7.3 分離解析度(Separation Resolution, Rs) 43
2.5.7.4 DNA與圓柱碰撞效應 45
2.6 DNA分離之微流道設計策略 46
2.6.1 以正向應力分離之微流道 46
2.6.2 用於收集不同位置DNA之分岔型微流道 48
2.6.3 透過增加預通道提升分離效果 50
第3章 模擬方法 52
3.1 布朗動態法(Brownian Dynamics, BD) 52
3.1.1 布朗運動(Brownian Motion) 53
3.1.2 彈簧力 54
3.1.3 體積排斥力 55
3.1.4 牆壁體積排斥力 55
3.1.5 無因次化 56
3.2 有限元素法(Finite Element Method, FEM) 57
3.2.1 通道中的電場計算 57
3.2.2 通道中的流場計算 60
3.3 有限元素法結合布朗動態法 61
3.4 本研究之流程 64
3.5 模擬參數設定 65
3.5.1 時間步階 65
3.5.2 參數設定調整 65
3.6 DNA結果分析 67
3.6.1 DNA移動行為之分析 67
3.6.2 以通過完整通道之時間差分離DNA 68
3.6.3 以垂直於速度方向之位置差異分離 69
3.6.3.1 偏移效率 71
3.6.3.2 Sorting Efficiency 71
第4章 結果討論 72
4.1 DNA於漸縮-漸擴型微流道受正向應力遷移 72
4.1.1 Case1-1以電場驅動漸縮-漸擴型微流道 72
4.1.1.1 Case1-1之電場及電力線分布 72
4.1.1.2 Case1-1中DNA之運動型態 74
4.1.1.3 Case1-1之分離結果 77
4.1.2 Case1-2結合圓柱陣列之漸縮-漸擴型微流道 81
4.1.2.1 Case1-2之電場及電力線分布 81
4.1.2.2 Case1-2中DNA之運動型態 82
4.1.2.3 Case1-2之分離結果 85
4.1.2.4 模擬結果與實驗之比較 89
4.1.2.5 透過正向應力分離兩種DNA 90
4.1.2.6 以黛博拉數比較不同大小之DNA 94
4.1.3 Case1-3以流場驅動結合圓柱陣列之漸縮-漸擴型微流道 96
4.1.3.1 流場中的流體動力作用 96
4.1.3.2 Case1-3之流速及流線分布 97
4.1.3.3 Case1-3中DNA之運動軌跡 99
4.1.3.4 Case1-3之分離結果 100
4.2 不同形狀參數對正向應力遷移之影響 103
4.2.1 Case2改變漸縮區之形狀 103
4.2.1.1 Case2之電力線分布 103
4.2.1.2 Case2中DNA之運動軌跡 105
4.2.1.3 Case2之分離結果 107
4.2.2 Case3改變漸擴區之形狀 110
4.2.2.1 Case3之電力線分布 110
4.2.2.2 Case3中DNA之運動軌跡 112
4.2.2.3 Case3之分離結果 113
4.2.3 不同形狀參數下偏移效果之評估 116
4.2.4 Case4利用預通道增加分離效果 118
4.2.4.1 Case4之電力線分布 118
4.2.4.2 Case4中DNA之運動軌跡 119
4.2.4.3 Case4之分離結果 120
4.2.4.4 Case4連接Case1-2之分離結果 122
4.3 利用位置收集DNA之分岔型通道 125
4.3.1 改變電場對分岔型通道之影響 125
4.3.1.1 分岔型通道電力線分布 125
4.3.1.2 不同電場下之分離結果 125
4.3.2 改變側邊通道電位對分岔型通道之影響 128
4.3.2.1 分岔型通道電力線分布 128
4.3.2.2 不同側邊通道電位下之分離結果. 130
4.4 利用正向應力分離及純化DNA之方法 132
4.4.1 Case5以負介電泳增加DNA分離效果 132
4.4.1.1 通道中介電泳力之模擬 132
4.4.1.2 介電泳結合正向應力偏移分離效果 133
4.4.2 Case6三種以上DNA之連續式分離 139
4.4.2.1 同時分離三種DNA之通道設計 139
4.4.2.2 DNA電泳路徑 141
第5章 結論 143
第6章 參考文獻 145
dc.language.isozh-TW
dc.title以布朗動態法模擬由正向應力驅動DNA電泳分離zh_TW
dc.titleBrownian Dynamics Simulation of Electrophoretic DNA Separation by the Normal Stress Effecten
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊怡哲,蕭百沂,江宏仁
dc.subject.keyword布朗動態法,DNA分離,電泳,微流道,正向應力,zh_TW
dc.subject.keywordBrownian Dynamics,DNA Separation,Electrophoresis,Normal Stress,en
dc.relation.page150
dc.identifier.doi10.6342/NTU201902684
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
dc.date.embargo-lift2024-08-15-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf9.94 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved