Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7238
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林頌然(Sung-Jan Lin)
dc.contributor.authorSuet Yee Teeen
dc.contributor.author鄭學瀛zh_TW
dc.date.accessioned2021-05-19T17:40:29Z-
dc.date.available2024-08-12
dc.date.available2021-05-19T17:40:29Z-
dc.date.copyright2019-08-12
dc.date.issued2019
dc.date.submitted2019-08-07
dc.identifier.citationA. Urruticoechea, R. A., J. Balart, A. Villanueva, F. Viñals and G. Capellá (2010). 'Recent Advances in Cancer Therapy- An Overview.'
Alonso, L. and E. Fuchs (2006). 'The hair cycle.' J Cell Sci 119(Pt 3): 391-393.
Arnold Biological Luboratory, B. U., Providence, Rhode Island (1953). 'Changes in the skin relation to the hair growth cycle.'
Balagamwala, E. H., A. Stockham, R. Macklis and A. D. Singh (2013). 'Introduction to radiotherapy and standard teletherapy techniques.' Dev Ophthalmol 52: 1-14.
Baskar, R., K. A. Lee, R. Yeo and K. W. Yeoh (2012). 'Cancer and radiation therapy: current advances and future directions.' Int J Med Sci 9(3): 193-199.
Bentzen, S., W. Dorr, M. Anscher, J. Denham, M. Hauerjensen, L. Marks and J. Williams (2003). 'Normal tissue effects: reporting and analysis.' Seminars in Radiation Oncology 13(3): 189-202.
Bentzen, S. M. (2006). 'Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology.' Nat Rev Cancer 6(9): 702-713.
Brown, A. and H. Suit (2004). 'The centenary of the discovery of the Bragg peak.' Radiother Oncol 73(3): 265-268.
Chase, H. B. (1954). 'Growth of the Hair.'
Cox, J. and M. Mann (2008). 'MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.' Nat Biotechnol 26(12): 1367-1372.
Davis, B. K. (1962). 'Mechanism of hair-growth.pdf>.'
De Ruysscher, D., G. Niedermann, N. G. Burnet, S. Siva, A. W. M. Lee and F. Hegi-Johnson (2019). 'Radiotherapy toxicity.' Nat Rev Dis Primers 5(1): 13.
Delaney, G., S. Jacob, C. Featherstone and M. Barton (2005). 'The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines.' Cancer 104(6): 1129-1137.
Donya, M., M. Radford, A. ElGuindy, D. Firmin and M. H. Yacoub (2014). 'Radiation in medicine: Origins, risks and aspirations.' Glob Cardiol Sci Pract 2014(4): 437-448.
Driskell, R. R., C. Clavel, M. Rendl and F. M. Watt (2011). 'Hair follicle dermal papilla cells at a glance.' J Cell Sci 124(Pt 8): 1179-1182.
Driskell, R. R., C. A. Jahoda, C. M. Chuong, F. M. Watt and V. Horsley (2014). 'Defining dermal adipose tissue.' Exp Dermatol 23(9): 629-631.
F.D. Malkinsonm, L. G. R. M. (1972). 'Effects Of Hydroxyurea And Radiation On Hair Matrix Cells.'
Festa, E., J. Fretz, R. Berry, B. Schmidt, M. Rodeheffer, M. Horowitz and V. Horsley (2011). 'Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling.' Cell 146(5): 761-771.
Flores, A., J. Schell, A. S. Krall, D. Jelinek, M. Miranda, M. Grigorian, D. Braas, A. C. White, J. L. Zhou, N. A. Graham, T. Graeber, P. Seth, D. Evseenko, H. A. Coller, J. Rutter, H. R. Christofk and W. E. Lowry (2017). 'Lactate dehydrogenase activity drives hair follicle stem cell activation.' Nat Cell Biol 19(9): 1017-1026.
Foitzik, K., K. Krause, F. Conrad, M. Nakamura, W. Funk and R. Paus (2006). 'Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression.' Am J Pathol 168(3): 748-756.
Formenti, S. C. and S. Demaria (2009). 'Systemic effects of local radiotherapy.' The Lancet Oncology 10(7): 718-726.
Foster, A. R., C. Nicu, M. R. Schneider, E. Hinde and R. Paus (2018). 'Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal.' Arch Dermatol Res 310(5): 453-462.
Franklin H. Epstein, M. D. (1999). 'The biology of hair follicles.'
GerdLindner, V. B., Natalia V. Botchkareva, Gao Ling, Carinavan derVeen,andRalfPaus (1997). 'Analysis of Apoptosis during Hair Follicle Regression (Catagen).'
Greco, V., T. Chen, M. Rendl, M. Schober, H. A. Pasolli, N. Stokes, J. Dela Cruz-Racelis and E. Fuchs (2009). 'A two-step mechanism for stem cell activation during hair regeneration.' Cell Stem Cell 4(2): 155-169.
Hardy, M. H. (1992). '<The secret life of the hair follicle.pdf>.'
Herman B. Chase, H. R. a. V. W. S. (1951). 'Critical Stages of Hair Development and Pigmentation in the Mouse.'
Huang, W. Y., S. F. Lai, H. Y. Chiu, M. Chang, M. V. Plikus, C. C. Chan, Y. T. Chen, P. N. Tsao, T. L. Yang, H. S. Lee, P. Chi and S. J. Lin (2017). 'Mobilizing Transit-Amplifying Cell-Derived Ectopic Progenitors Prevents Hair Loss from Chemotherapy or Radiation Therapy.' Cancer Res 77(22): 6083-6096.
Kwok, K. H., K. S. Lam and A. Xu (2016). 'Heterogeneity of white adipose tissue: molecular basis and clinical implications.' Exp Mol Med 48: e215.
Lago, M. E. L., M. T. Cerqueira, R. P. Pirraco, R. L. Reis and A. P. Marques (2018). Skin in vitro models to study dermal white adipose tissue role in skin healing. Skin Tissue Models for Regenerative Medicine: 327-352.
Mehta, S. R., V. Suhag, M. Semwal and N. Sharma (2010). 'Radiotherapy: Basic Concepts and Recent Advances.' Medical Journal Armed Forces India 66(2): 158-162.
Muller-Rover, S., B. Handjiski, C. van der Veen, S. Eichmuller, K. Foitzik, I. A. McKay, K. S. Stenn and R. Paus (2001). 'A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages.' J Invest Dermatol 117(1): 3-15.
Paus, K. S. S. A. R. (2001). 'Controls of hair follicle cycling.'
Paus, R., I. S. Haslam, A. A. Sharov and V. A. Botchkarev (2013). 'Pathobiology of chemotherapy-induced hair loss.' The Lancet Oncology 14(2): e50-e59.
Pawlik, T. M. and K. Keyomarsi (2004). 'Role of cell cycle in mediating sensitivity to radiotherapy.' Int J Radiat Oncol Biol Phys 59(4): 928-942.
Pearson, H. B., E. McGlinn, T. J. Phesse, H. Schluter, A. Srikumar, N. J. Godde, C. B. Woelwer, A. Ryan, W. A. Phillips, M. Ernst, P. Kaur and P. Humbert (2015). 'The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis.' Mol Cancer 14: 169.
Porter AG1, J. R. (1999). 'Emerging roles of caspase-3 in apoptosis.'
Schneider, M. R., R. Schmidt-Ullrich and R. Paus (2009). 'The hair follicle as a dynamic miniorgan.' Curr Biol 19(3): R132-142.
Schulz-Ertner, D., O. Jakel and W. Schlegel (2006). 'Radiation therapy with charged particles.' Semin Radiat Oncol 16(4): 249-259.
Stenn KS, N. A., Jahoda CAB, McKay IA, Paus R (1999). 'What controls hair follicle cycling.'
Teruhiko Terasawa, M. T. D., MD; Stanley Ip, MD; Gowri Raman, MD; Joseph Lau, MD; and Thomas A. Trikalinos, MD, PhD (2009). 'Systematic Review: Charged-Particle Radiation Therapy for Cancer.'
Yang, H., R. C. Adam, Y. Ge, Z. L. Hua and E. Fuchs (2017). 'Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices.' Cell 169(3): 483-496 e413.
Zwick, R. K., C. F. Guerrero-Juarez, V. Horsley and M. V. Plikus (2018). 'Anatomical, Physiological, and Functional Diversity of Adipose Tissue.' Cell Metab 27(1): 68-83.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7238-
dc.description.abstract根據WHO在2018年統計指出,癌症是全球第二大死因,約占整體死因的六分之一。每種類型的癌症有不同的治療方式,包括:外科手術、化學治療、放射治療。然而,藉由放射治療對於局部的癌細胞進行毒殺,其所造成的副作用較嚴重,例如:皮膚會出現潮紅、乾燥、發癢,或是疲倦、食慾減低,甚至是局部照射範圍有掉髮的現象。
皮膚是哺乳動物最大的器官系統,而毛囊是動態微小器官並且深入生長於皮膚真皮層中,作為微小器官的毛囊,有著規律的生長週期,包含:生長期、凋亡期、休止期。各時期的毛囊均會有不同的結構或是細胞組成;而圍繞著毛囊的巨環境,例如有:神經、血管、脂肪組織等。除此之外,在毛囊內亦有幹細胞的分佈以維持毛髮週期不斷的循環再生。然而,生長期的毛囊若接受放射治療、輻射傷害後,會使毛囊進入萎縮性生長期或是萎縮性衰退期。
本實驗室先前的研究已發現毛囊在不同輻射劑量刺激下,會促使毛囊進入不同程度的衰退期。本研究的目的為探討輻射刺激後真皮層的巨環境與毛囊再生的關係,以期能瞭解輻射刺激後之毛囊再生機轉。實驗以輻射劑量2 Gy與5.5 Gy誘導毛囊進入適應性衰退期。毛囊在5.5 Gy輻射刺激後會有萎縮的現象,而在稍後恢復形態;而肌肉纖維與膠原纖維也因5.5 Gy輻射刺激後發生皺縮的現象,且此現象的改變與毛囊衰退期時間相吻合。我們以質譜定序且定量輻射後真皮層細胞的蛋白質,以期能從中獲得毛囊再生的相關資訊。從定序結果中發現,脂肪代謝相關蛋白在總蛋白質中有顯著的差異。最後,我們以5.5 Gy輻射處理小鼠後,餵食脂肪溶解抑制劑,以驗證脂肪溶解在毛囊再生中扮演的角色。實驗結果顯示,餵食脂肪溶解抑制劑的小鼠,其毛囊會延遲再次進入生長期約10天。
總結以上的實驗結果,本研究驗證了真皮層巨環境中之脂肪代謝在輻射刺激後之毛囊再生扮演重要的角色,脂肪代謝對於輻射刺激後之毛囊再生不可或缺。
zh_TW
dc.description.abstractAccording to WHO organization report, cancer is the second highest cause of death, accounting for approximately one sixth of death incidence in the world. There are several types of cancer treatments depending on the type of cancer and how advanced it is. Examples of current methods include chemotherapy, radiotherapy and surgery. A localized radiotherapy treatment, utilizing low doses or high doses of radiation to kill cancer cells, often causes a variety of side effects such as itchy skin, tiredness and temporary localized hair loss.
Skin is the largest organ in mammals. The hair follicle(HF) is one of the characteristic features of mammals serves as a unique mini-organ, anchoring into the skin. The hair follicle keeps regular hair growth cycle in three different stages: anagen, catagen and telogen stages. Each stage has different hair structures,cell populations, and macroenvironment in dermis. In addition, there are stem cells distributed in hair follicle in order to sustain hair cycle regeneration. Hair follicles would enter either dystrophy anagen or dystrophy catagen if the hair follicles are exposed to long term radiation during a radiotherapy.
Our lab's previous studies indicated 2 Gray (Gy) and 5.5 Gy ionizing radiation may induce hair dystrophy in different manners. The aim of this study is to figure out the relationship between dermal macroenvironment and hair regeneration in adaptation to irradiation dystrophy, and to understand the mechanism of hair follicle regeneration upon radiation damage. In this study, HFs in 5.5Gy ionizing radiation will degenerate and recover afterwards. Afterwards, dermal macro-environment will be dramatically changed as seen in immunostaining of oil red O(ORO) and Masson trichome staining after radiation treatment. Thus, we utilized mass spectrometry to identify and quantify protein expression in dermal macroenvironment after ionizing radiation. Based on protein sequencing data, it indicates that proteins associated with fatty acid metabolism would be changed significantly after radiation. Finally, we used Acipimox (lipolysis inhibitor) as our functional assay for animal model to confirm that lipolysis plays the important role in hair regeneration after ionizing radiation. The results indicated that HFs would delay re-entering of anagen stage almost 10 days, comparing with no-drug intake control group. In summary, our findings revealed that fatty acid metabolism of dermal macroenvironment would be a vital factor of hair regeneration after ionizing radiation. Thus, we believe that fatty acid is essential for hair follicle regeneration stimulated by ionizing radiation.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:29Z (GMT). No. of bitstreams: 1
ntu-108-R06548060-1.pdf: 5200129 bytes, checksum: ef8e7a7d00927914a41e1693ddb3d283 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContents
口試委員審定書 I
ACKNOWLEDGEMENT II
中文摘要 III
ABSTRACT V
LIST OF ABBREVIATIONS VII
CHAPTER1 INTRODUCTION 1
1.1 INTRODUCTION TO RADIATION 1
1.2 CLINICAL APPLICATIONS OF RADIATION AND ITS BIOLOGICAL EFFECT ON MAMMAL 3
1.3 HAIR FOLLICLE AND DERMAL MACROENVIRONMENT 4
1.3.1 STRUCTURE OF HAIR FOLLICLES 4
1.3.2 HAIR CYCLING 5
1.3.3 STRUCTURE OF DERMAL MACROENVIRONMENT 6
1.3.4 ADIPOSE TISSUE 6
1.4 RESPONSE OF HAIR FOLLICLE TO IONIZING RADIATION 9
1.5 MOTIVATION AND PURPOSE 11
CHAPTER 2 MATERIALS AND METHODS 12
2.1 ANIMALS 12
2.2 MASS SPECTROMETRY WORK FLOW 13
2.3 IRRADIATION TREATMENT 18
2.4 HISTOLOGY EXAMINATION 18
2.5 PHARMACEUTICAL LIPOLYSIS INHIBITION 18
2.6 IMMUNOFLUORESCENCE STAINING AND MICROSCOPY 19
2.7 OIL RED O STAINING 20
2.8 STATISTICAL ANALYSIS 20
CHAPTER 3 RESULTS 21
3.1 HAIR FOLLICLE RESPOND TO IONIZING RADIATION 21
3.2 IRRADIATION TRIGGER DERMAL MACROENVIRONMENT CHANGE 23
3.3 IRRADIATION INDUCE HAIR INJURY IN DERMAL MACROENVIRONMENT 26
3.4 DERMAL MACROENVIRONMENT RESPOND TO IONIZING RADIATION 29
3.5 PROFILING DISTINCTION BETWEEN EACH RADIATION DOSAGE TREATMENT POPULATION FROM TOTAL PROTEOME 33
3.6 COMPARING THE PROTEOME IN EACH POPULATION 37
3.7 FAT METABOLISM RELATED BIOLOGICAL PROCESS WERE HIGHLY ENRICHED IN BOTH POPULATION 41
3.8 LIPOLYSIS INHIBITION DELAYED THE RECOVERY OF HAIR RE-ENTRY ANAGEN STAGE AFTER I.R. INJURY 43
CHAPTER 4 DISCUSSION AND CONCLUSIONS 51
CHAPTER 5 REFERENCE 53
dc.language.isoen
dc.title藉由輻射刺激探討真皮層中的巨環境影響毛囊再生zh_TW
dc.titleDermal macroenvironment promote hair regeneration in adaptation to irradiation dystrophyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee冀宏源(Hung-Yuan Chi),楊宗霖(Tsung-Lin Yang)
dc.subject.keyword放射治療,掉髮,毛囊再生,脂肪代謝,zh_TW
dc.subject.keywordradiotherapy,hair loss,hair follicle regeneration,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201901903
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
dc.date.embargo-lift2024-08-12-
Appears in Collections:醫學工程學研究所

Files in This Item:
File SizeFormat 
ntu-108-1.pdf5.08 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved