請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72379完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明(Chung-Ming Chen) | |
| dc.contributor.author | Yi-Chen Lin | en |
| dc.contributor.author | 林邑城 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:38:51Z | - |
| dc.date.available | 2023-08-18 | |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | [1] Benjamin, Emelia J., et al. 'Heart disease and stroke statistics—2017 update: a report from the American Heart Association.' Circulation 135.10 (2017): 146.
[2] Srinivas, Sunil Kumar, et al. 'Incidence, predictors, clinical profile, management and outcome of patients with isolated left main coronary artery ostial disease.' Indian heart journal 70.2 (2018): 214-219. [3] Ashley, Euan A., and Josef Niebauer. 'Cardiology explained.' Remedica (2004). [4] Bhatia, Sujata K. 'Coronary Artery Disease.' Biomaterials for Clinical Applications (2010): 23-49. [5] Bergheanu, S. C., M. C. Bodde, and J. W. Jukema. 'Pathophysiology and treatment of atherosclerosis.' Netherlands Heart Journal 25.4 (2017): 231-242. [6] Carrozza, Joseph P. 'Complications of diagnostic cardiac catheterization.' Waltham, MA. Accessed on 9 (2012): 15. [7] Pflederer, Tobias, et al. 'Measurement of coronary artery bifurcation angles by multidetector computed tomography.' Investigative radiology 41.11 (2006): 793-798. [8] Sun, Zhong-Hua, Yan Cao, and Hua-Feng Li. 'Multislice computed tomography angiography in the diagnosis of coronary artery disease.' Journal of geriatric cardiology: JGC 8.2 (2011): 104. [9] Tan, Jessica C., et al. 'Systematic comparison of perfusion‐CT and CT‐angiography in acute stroke patients.' Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 61.6 (2007): 533-543. [10] Pan, Jia-wei, et al. 'Computed tomography perfusion and computed tomography angiography for prediction of clinical outcomes in ischemic stroke patients after thrombolysis.' Neural regeneration research 12.1 (2017): 103. [11] Nakanishi, Rine, and Mathew J. Budoff. 'Noninvasive FFR derived from coronary CT angiography in the management of coronary artery disease: technology and clinical update.' Vascular health and risk management 12 (2016): 269. [12] Ko, Brian S., et al. 'Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis.' JACC: Cardiovascular Imaging (2016): 2066. [13] Kolh, Philippe, et al. 'Guidelines on myocardial revascularization.' European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 38 (2010): S1-S52. [14] Yıldız, Abdulmelik, et al. 'A comparison of drug-eluting stent versus balloon angioplasty in patients with bare-metal stent instent restenosis: 5 year outcomes.' International Journal of the Cardiovascular Academy 2.1 (2016): 1-5. [15] Mohan, Shilpi, and Anil Dhall. 'A comparative study of restenosis rates in bare metal and drug-eluting stents.' The International journal of angiology: official publication of the International College of Angiology, Inc 19.2 (2010): 66. [16] Di Mario, Carlo, and Nilesh Sutaria. 'Coronary angiography in the angioplasty era: projections with a meaning.' Heart 91.7 (2005): 968-976. [17] Pelberg, Robert, and Wojciech Mazur. 'Cardiac CT angiography manual.' Springer London (2015). [18] Dishmon, Dwight A., et al. 'High incidence of inaccurate stent placement in the treatment of coronary aorto-ostial disease.' The Journal of invasive cardiology 23.8 (2011): 322-326. [19] Rubinshtein, Ronen, et al. 'Geographic miss with aorto-ostial coronary stent implantation: insights from high-resolution coronary computed tomography angiography.' EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 11.3 (2015): 301-307. [20] Hoye, Angela, and Wim J. Van Der Giessen. 'New approaches to ostial and bifurcation lesions.' Journal of interventional cardiology 17.6 (2004): 397-403. [21] Lefèvre, Thierry, et al. 'Stenting of bifurcation lesions: classification, treatments, and results.' Catheterization and cardiovascular interventions 49.3 (2000): 274-283. [22] Iakovou, Ioannis, Lei Ge, and Antonio Colombo. 'Contemporary stent treatment of coronary bifurcations.' Journal of the American College of Cardiology 46.8 (2005): 1446-1455. [23] Collins, Nicholas, et al. 'Long-term outcomes after percutaneous coronary intervention of bifurcation narrowings.' The American journal of cardiology 102.4 (2008): 404-410. [24] Dzavik, Vladimir, et al. 'Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle.' American heart journal 152.4 (2006): 762-769. [25] Lesage, David, et al. 'A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes.' Medical image analysis 13.6 (2009): 819-845. [26] Dehkordi, Maryam Taghizadeh, Saeed Sadri, and Alimohamad Doosthoseini. 'A review of coronary vessel segmentation algorithms.' Journal of medical signals and sensors 1.1 (2011): 49. [27] Kirişli, H. A., et al. 'Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography.' Medical image analysis 17.8 (2013): 859-876. [28] Hennemuth, Anja, et al. 'One-click coronary tree segmentation in CT angiographic images.' International Congress Series. Vol. 1281. Elsevier (2005). [29] Wang, Chunliang, Rodrigo Moreno, and Örjan Smedby. 'Vessel segmentation using implicit model-guided level sets.' Proceedings of 3D Cardiovascular Imaging: a MICCAI segmentation challenge workshop (2012). [30] Mohr, Brian, Saad Masood, and Costas Plakas. 'Accurate lumen segmentation and stenosis detection and quantification in coronary CTA.' Proceedings of 3D Cardiovascular Imaging: a MICCAI segmentation challenge workshop (2012). [31] Lugauer, Felix, et al. 'Precise lumen segmentation in coronary computed tomography angiography.' International MICCAI Workshop on Medical Computer Vision (2014). [32] Zhou, Chuan, et al. 'Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method.' Computerized Medical Imaging and Graphics 36.1 (2012): 1-10. [33] Cetin, Suheyla, and Gozde Unal. 'A higher-order tensor vessel tractography for segmentation of vascular structures.' IEEE transactions on medical imaging 34.10 (2015): 2172-2185. [34] Kitamura, Yoshiro, et al. 'Coronary lumen and plaque segmentation from CTA using higher-order shape prior.' International MICCAI Workshop on Medical Computer Vision (2014). [35] Sivalingam, Udhayaraj, et al. 'Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force.' Medical Imaging 2016: Computer-Aided Diagnosis. Vol. 9785. International Society for Optics and Photonics (2016). [36] Litjens, Geert, et al. 'A survey on deep learning in medical image analysis.' Medical image analysis 42 (2017): 60-88. [37] Nasr-Esfahani, Ebrahim, et al. 'Vessel extraction in X-ray angiograms using deep learning.' Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the IEEE. IEEE (2016). [38] Moeskops, Pim, et al. 'Deep learning for multi-task medical image segmentation in multiple modalities.' International Conference on Medical Image Computing and Computer-Assisted Intervention (2016). [39] Kjerland, Øyvind. 'Segmentation of coronary arteries from CT-scans of the heart using deep learning.' MS thesis. NTNU (2017). [40] Lee, Chien-Hao. 'Prior-embedded three-dimensional cell competition algorithm for atherosclerotic coronary segmentation and analysis in multislice computed tomography.' MS thesis. NTU (2008). [41] Chung, Cheng-Hong. 'Coronary artery tracking and extraction algorithm in multi-slice computed tomography image.' MS thesis. NTU (2010). [42] Wang, Chien-Hsuan. 'Automatic segmentation of coronary vessel and plaque detection algorithm in CT image.' MS thesis. NTU (2011). [43] Huang, Chao-Yu. 'The analysis of coronary arteries plaque in 3D CTA with and without contrast agent: vessel reconstruction and plaque registration.' MS thesis. NTU (2012). [44] Chou, Hao-Kai. 'Coronary artery reconstruction algorithm in multi-slice computed tomography image.' MS thesis. NTU (2013). [45] Cui, Yue, et al. 'Quantification of left coronary bifurcation angles and plaques by coronary computed tomography angiography for prediction of significant coronary stenosis: A preliminary study with dual-source CT.' PloS one 12.3 (2017): 0174352. [46] Kawasaki, Tomohiro, et al. 'The bifurcation study using 64 multislice computed tomography.' Catheterization and Cardiovascular Interventions 73.5 (2009): 653-658. [47] Sun, Zhonghua, and Yan Cao. 'Multislice CT angiography assessment of left coronary artery: correlation between bifurcation angle and dimensions and development of coronary artery disease.' European journal of radiology 79.2 (2011): 90-95. [48] Givehchi, Sogol, et al. 'Measurement of coronary bifurcation angle with coronary CT angiography: A phantom study.' Physica Medica 45 (2018): 198-204. [49] Medrano-Gracia, Pau, et al. 'A computational atlas of normal coronary artery anatomy.' EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology 12.7 (2016): 845-854. [50] Dumay, Adrie CM, Johan HC Reiber, and Jan J. Gerbrands. 'Determination of optimal angiographic viewing angles: basic principles and evaluation study.' IEEE transactions on medical imaging 13.1 (1994): 13-24. [51] Chen, S. James, and John D. Carroll. '3-D reconstruction of coronary arterial tree to optimize angiographic visualization.' IEEE transactions on medical imaging 19.4 (2000): 318-336. [52] Christiaens, Joeri, et al. 'Determination of optimal angiographic viewing angles for QCA.' International Congress Series. Vol. 1230. Elsevier, 2001. [53] Green, Nathan E., et al. 'Angiographic views used for percutaneous coronary interventions: A three‐dimensional analysis of physician‐determined vs. computer‐generated views.' Catheterization and Cardiovascular Interventions 64.4 (2005): 451-459. [54] Garcia, Joel A., et al. 'Determination of optimal viewing regions for X-ray coronary angiography based on a quantitative analysis of 3D reconstructed models.' The international journal of cardiovascular imaging 25.5 (2009): 455-462. [55] Bi, Jingying, Michael Grass, and Dirk Schäfer. 'Optimization of acquisition trajectories for 3D rotational coronary venography.' International journal of computer assisted radiology and surgery 5.1 (2010): 19. [56] Tu, Shengxian, et al. 'In vivo assessment of bifurcation optimal viewing angles and bifurcation angles by three-dimensional (3D) quantitative coronary angiography.' The international journal of cardiovascular imaging 28.7 (2012): 1617-1625. [57] Feuillâtre, Hélene, et al. 'Automatic determination of optimal view for the visualization of coronary lesions by rotational X-ray angiography.' IRBM 34.4-5 (2013): 291-295. [58] Chen, Xiaodong, et al. 'A new algorithm for calculating optimal viewing angles in coronary angiography based on 4-D cardiac computed tomography.' Journal of X-ray science and technology 22.2 (2014): 137-145. [59] Kitslaar, Pieter H., et al. 'Automated determination of optimal angiographic viewing angles for coronary artery bifurcations from CTA data.' Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling. Vol. 6918. International Society for Optics and Photonics (2008). [60] Wang, Xuehu, et al. 'Global optimization of optimal angiographic viewing angles for coronary arteries with multiple segments.' Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE (2013). [61] Python Core Team. 'Python: A dynamic, open source programming language.' Wilmington, DE: Python Software Foundation (2015). [62] Friman, Ola, et al. 'Multiple hypothesis template tracking of small 3D vessel structures.' Medical image analysis 14.2 (2010): 160-171. [63] Schaap, Michiel, et al. 'Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms.' Medical image analysis 13.5 (2009): 701-714. [64] Hung, Pei-Kai. 'An automated algorithm for coronary artery reconstruction and plaque burden assessment in multi-slice computed tomography.' MS thesis. NTU (2016). [65] Frangi, Alejandro F., et al. 'Multiscale vessel enhancement filtering.' International Conference on Medical Image Computing and Computer-Assisted Intervention (1998). [66] Tian, Yun, et al. 'Automated segmentation of coronary arteries based on statistical region growing and heuristic decision method.' BioMed research international (2016). [67] Freiman, Moti, et al. 'Improving CCTA‐based lesions' hemodynamic significance assessment by accounting for partial volume modeling in automatic coronary lumen segmentation.' Medical physics 44.3 (2017): 1040-1049. [68] Shams, Marwa, et al. 'Coronary artery tree segmentation in computed tomography angiography using Otsu method.' Intelligent Computing and Information Systems (ICICIS), 2017 Eighth International Conference on. IEEE (2017). [69] Gao, Zhifan, et al. 'Automatic segmentation of coronary tree in CT angiography images.' International Journal of Adaptive Control and Signal Processing (2017). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72379 | - |
| dc.description.abstract | 心臟疾病的死亡率在台灣僅次於惡性腫瘤,其中最常見者為冠狀動脈疾病。不良的飲食與生活習慣,如抽菸、高血壓、高膽固醇指數、糖尿病或缺乏運動等皆為冠狀動脈疾病的危險因子。動脈粥狀硬化是斑塊聚積硬化的慢性過程,常好發於冠狀動脈分叉處。依據病情的嚴重程度將採取不同的治療。其中,經皮冠狀動脈手術的支架置入侵入性低且恢復較快,逐漸成為血運重建方式中治療冠狀動脈疾病的首選。然而,在放置支架的過程中,醫生根據個人經驗或手術準則所採取傳統投影角度有時無法提供足夠好的視野,若支架未對病變位置完整涵蓋或突出,可能會造成再狹窄與支架栓塞。此外,由於分叉夾角也影響支架技術的選用,本研究將建立一個電腦斷層掃描之電腦輔助支架放置系統,最佳投影角度和分叉角度的資訊可以幫助醫生在手術前選擇合適的支架,並透過術中冠狀動脈病變的最佳視野以更準確地放置支架。
本研究分析左、右冠狀動脈四個主要的分叉區域,包含LAD/LCX、LAD/diagonal、LCX/OM、PDA/PLA。首先,多假設追蹤的技術被用來提取影像上的冠狀動脈血管樹與血管中心線,並提出深度學習演算法改善血管分割的結果。在定義分叉平面中的分叉點與兩個分支點後,除了能計算分叉夾角,並可透過最小化分叉夾角差與分支縮短比例參數找出最佳投影角度。結果顯示,深度學習演算法在冠狀動脈血管分割中有著良好的表現。而最(次)佳投影角度在分叉夾角差與縮短比例較傳統投影角度來得低,代表其有更佳的手術視野,並透過傳統血管攝影驗證此分析結果。此外,在43個最(次)佳投影角度的統計分析中,發現各分叉位置並無集中的分布,且分叉夾角差的容許度中十度僅較兩度微幅地改善了縮短比例。 本研究提出了一個電腦斷層掃描之電腦輔助支架放置系統,除了讓醫生以分叉夾角資訊進行支架選擇的術前規劃,在臨床手術時更能以最佳投影角度的視野進行精確的支架放置,縮短心導管手術的時間、改善手術治療效果。 | zh_TW |
| dc.description.abstract | Heart disease is the second leading cause of death in Taiwan, and coronary artery disease is the most common type of heart disease. Bad eating habits and lifestyle such as smoking, high blood pressure, high cholesterol level, diabetes or lack of exercise are risk factors for coronary artery disease. Atherosclerosis is a chronic condition in which arteries harden through build-up of plaques, and often occurs at bifurcations of coronary arteries. Different treatments are taken depending on the severity of disease. Patient with mild symptoms are suggested to take medicines while revascularization is recommended in severe cases. Percutaneous coronary intervention with stent implantation is less invasive and recovers more rapidly, and gradually becomes the preferred revascularization modality in treating coronary artery disease. However, physicians often perform stent placement through some conventional projection angles based on personal experience or clinical guideline, of which the view may be inappropriate during the surgery. Restenosis or stent embolism may occur if a stent doesn’t completely cover the lesion. Besides, bifurcation angles impact the selection of stent technology, so the research is proposed to develop a computer-aided stent placement system based on CTA. The information on optimal projection angles and bifurcation angles helps physicians to choose the suitable stent before surgery, and to place stent more precisely by having an optimal view for the visualization of coronary artery lesions during surgery.
Four main bifurcation regions of the left and right coronary arteries were analyzed in our research, including LAD/LCX, LAD/diagonal, LCX/OM, and PDA/PLA. First, multiple hypothesis tracking was used to extract coronary artery trees and vessel centerline from an image, and a deep learning algorithm was proposed to improve the result of vessel segmentation. A bifurcation angle could be calculated after a bifurcation point and two branch points were defined in a bifurcation plane. Parameters of angle discrepancy and foreshortening ratio were proposed to be minimized to acquire an optimal projection angle. Result showed that the deep learning algorithm had a good performance in coronary artery segmentation. Besides, Angle discrepancy and foreshortening ratio of the (obtainable) optimal projection angle were smaller than those of conventional projection angles, implying a better visualization in surgical view which was further validated by conventional angiography. In addition, the statistical analysis showed that (obtainable) optimal projection angles were not densely distributed among 43 cases. The foreshortening ratio was slightly improved if the tolerance of angle discrepancy changed from two to ten degrees. A computer-aided stent placement system based on CTA is proposed in the research. Physicians are able to make pre-clinical planning by getting information on bifurcation angle to choose the suitable stent, and can place stents precisely under the view of optimal projection angle, which shortens the time spent during the surgery and improves the clinical outcome. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:38:51Z (GMT). No. of bitstreams: 1 ntu-107-R05548016-1.pdf: 35237734 bytes, checksum: 2c0cd4fca5f60be41ee9089a8059d162 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 研究背景 3 2.1 基礎知識與理論 3 2.1.1 冠狀動脈疾病 3 2.1.2 影像診斷工具 4 2.1.3 手術治療方式與流程 6 2.2 文獻回顧 10 2.2.1 冠狀動脈分割 10 2.2.2 先期研究回顧 12 2.2.3 分叉夾角的計算 13 2.2.4 最佳投影角度 14 第三章 研究材料與方法 16 3.1 研究材料 16 3.2 研究方法 16 3.2.1 冠狀動脈中心線萃取與血管分割 17 3.2.1.1 多假設追蹤 17 3.2.1.2 深度學習演算法 21 3.2.2 定義冠狀動脈分叉面 24 3.2.3 最佳投影角度條件設定 25 3.2.4 影像驗證 27 第四章 結果與討論 30 4.1 冠狀動脈血管分割 30 4.2 模擬影像驗證 35 4.3 量化分析 36 4.4 統計結果分析 39 第五章 結論 41 參考資料 42 附錄 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 傳統血管攝影 | zh_TW |
| dc.subject | 冠狀動脈分割 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 最佳投影角度 | zh_TW |
| dc.subject | 電腦輔助支架放置 | zh_TW |
| dc.subject | 冠狀動脈疾病 | zh_TW |
| dc.subject | 電腦斷層血管攝影術 | zh_TW |
| dc.subject | deep learning | en |
| dc.subject | coronary artery segmentation | en |
| dc.subject | coronary artery disease | en |
| dc.subject | conventional invasive angiography | en |
| dc.subject | optimal projection angle | en |
| dc.subject | computed tomographic angiography | en |
| dc.subject | computer-aided stent placement | en |
| dc.title | 電腦斷層掃描決定冠狀動脈分叉之最佳投影角度演算法:與傳統血管攝影之比較 | zh_TW |
| dc.title | Determination of the Optimal Projection Angles for Coronary Bifurcation by Analyzing Coronary Computed Tomographic Angiography: Comparison with Conventional Invasive Angiography | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王宗道(Tzung-Dau Wang),李文正(Wen-Jeng Lee),李佳燕(Chia-Yen Lee) | |
| dc.subject.keyword | 冠狀動脈疾病,傳統血管攝影,電腦斷層血管攝影術,電腦輔助支架放置,最佳投影角度,深度學習,冠狀動脈分割, | zh_TW |
| dc.subject.keyword | coronary artery disease,conventional invasive angiography,computed tomographic angiography,computer-aided stent placement,optimal projection angle,deep learning,coronary artery segmentation, | en |
| dc.relation.page | 155 | |
| dc.identifier.doi | 10.6342/NTU201803458 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 34.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
