請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72378完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恩仲(En-Chung Lin) | |
| dc.contributor.author | Shu-Han Ting | en |
| dc.contributor.author | 丁姝含 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:38:46Z | - |
| dc.date.available | 2021-04-01 | |
| dc.date.copyright | 2018-08-17 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | Abecasis, G. R., and J. E. Wigginton. 2005. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am. J. Hum. Genet. 77:754-767.
Adkins, R. M. 2004. Comparison of the accuracy of methods of computational haplotype inference using a large empirical dataset. BMC Genet. 5:22. doi: 10.1186/1471-2156-5-22 Aerts, J. A. 2005. Chicken genome mapping: constructing part of a road map for mining this bird's DNA. PhD thesis. Wageningen University, Wageningen, Netherlands. Agarwal, S. K., L. A. Cogburn, and J. Burnside. 1995. Comparison of gene expression in normal and growth hormone receptor-deficient dwarf chickens reveals a novel growth hormone regulated gene. Biochem. Biophys. Res. Commun. 206:153-160. doi: 10.1006/bbrc.1995.1022 Anandbabu, K., S. R. Bharathidevi, S. Sripriya, P. Sen, V. J. Prakash, A. Bindu, N. Viswanathan, and N. Angayarkanni. 2016. Serum paraoxonase activity in relation to lipid profile in age-related macular degeneration patients. Exp. Eye. Res. 152:100-112. doi: 10.1016/j.exer.2016.09.009 Ardlie, K. G., L. Kruglyak, and M. Seielstad. 2002. Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3:299-309. doi: 10.1038/nrg777 Barrett, J. C., B. Fry, J. Maller, and M. J. Daly. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263-265. doi: 10.1093/bioinformatics/bth457 Bennett, C. S., H. R. Khorram Khorshid, J. A. Kitchen, D. Arteta, and R. Dalgleish. 2004. Characterization of the human secreted phosphoprotein 24 gene (SPP2) and comparison of the protein sequence in nine species. Matrix. Biol. 22:641-651. doi: 10.1016/j.matbio.2003.12.001 Berthouly, C., B. Bed'Hom, M. Tixier-Boichard, C. F. Chen, Y. P. Lee, D. Laloë, H. Legros, E. Verrier, and X. Rognon. 2008. Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds. Anim. Genet. 39:121-129. doi: 10.1111/j.1365-2052.2008.01703.x Bourdon, R. M. 2000. Understanding Animal Breeding. 2nd ed. Prentice Hall, Upper Saddle River, NJ, USA. Browning, B. L., and S. R. Browning. 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84:210-223. doi: 10.1016/j.ajhg.2009.01.005 Browning, S. R., and B. L. Browning. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81:1084-1097. doi: 10.1086/521987 Browning, S. R., and B. L. Browning. 2011. Haplotype phasing: existing methods and new developments. Nat. Rev. Genet. 12:703-714. doi: 10.1038/nrg3054 Burt, D. W. 2002. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 96:97-112. doi: 10.1159/000063018 Bush, W. S., and J. H. Moore. 2012. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 8:e1002822. doi: 10.1371/journal.pcbi.1002822 Calus, M. P. L., T. H. E. Meuwissen, A. P. W. de Roos, and R. F. Veerkamp. 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553-561. doi: 10.1534/genetics.107.080838 Calus, M. P. L., T. H. E. Meuwissen, J. J. Windig, E. F. Knol, C. Schrooten, A. L. J. Vereijken, and R. F. Veerkamp. 2009. Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values. Genet. Sel. Evol. 41:11. doi: 10.1186/1297-9686-41-11 Chang, C. S., C. F. Chen, C. Berthouly-Salazar, O. Chazara, Y. P. Lee, C. M. Chang, K. H. Chang, B. Bed'Hom, and M. Tixier-Boichard. 2012a. A global analysis of molecular markers and phenotypic traits in local chicken breeds in Taiwan. Anim. Genet. 43:172-182. doi: 10.1111/j.1365-2052.2011.02226.x Chang, M. T., Y. S. Cheng, and M. C. Huang. 2012b. Association of prolactin haplotypes with reproductive traits in Tsaiya ducks. Anim. Reprod. Sci. 135:91-96. doi: 10.1016/j.anireprosci.2012.08.024 Chang, M. T., Y. S. Cheng, and M. C. Huang. 2012c. A novel non-synonymous SNP of the COLX gene and its association with duck reproductive traits. Mol. Cell. Probes. 26:204-207. doi: 10.1016/j.mcp.2012.05.003 Chang, M. T., Y. S. Cheng, and M. C. Huang. 2013. Novel genetic markers of the carbonic anhydrase II gene associated with egg production and reproduction traits in Tsaiya ducks. Reprod. Domest. Anim. 48:98-104. doi: 10.1111/j.1439-0531.2012.0 2038.x Chao, C. H., and Y. P. Lee. 2001. Relationship between reproductive performance and immunity in Taiwan country chickens. Poult. Sci. 80:535-540. doi: 10.1 093/ps/80. 5.535 Chen, C. F., C. Berthouly, X. Rognon, K. H. Chang, D. Laloë, H. Legros, E. Verrier, M. Tixier-Boichard and Y. P. Lee. 2004. Characterization of six Asian local chicken breeds : performances and polymorphism from microsatellite markers. Int. Soc. Anim. Gen. p.113. Chen, L. R., C. H. Chao, C. F. Chen, Y. P. Lee, Y. L. Chen, and Y. L. Shiue. 2007. Expression of 25 high egg production related transcripts that identified from hypothalamus and pituitary gland in red-feather Taiwan country chickens. Anim. Reprod. Sci. 100:172-185. doi: 10.1016/j.anireprosci.2006.07.005 Cheng, C. Y., P. R. Chen, C. J. Chen, S. H. Wang, C. F. Chen, Y. P. Lee, and S. Y. Huang. 2015. Differential protein expression in chicken spermatozoa before and after freezing-thawing treatment. Anim. Reprod. Sci. 152:99-107. doi: 10.1016/j.an ireprosci.2014.11.011 Clark, A. G. 1990. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol. 7:111-122. doi: 10.1093/oxfordjournals.molbev. a040591 Davidson, S. 2000. Research suggests importance of haplotypes over SNPs. Nat. Biotechnol. 18:1134-1135. doi: 10.1038/81100 Dekkers, J. C. M. 2004. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J. Anim. Sci. 82 E-Suppl:E313-328. Dekkers, J. C. M., and F. Hospital. 2002. The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Genet. 3:22-32. doi: 10.1038/nrg701 Dekkers, J. C. M. 2012. Application of genomics tools to animal breeding. Curr. Genom. 13:207-212. doi: 10.2174/138920212800543057 Delaneau, O., C. Coulonges, and J. F. Zagury. 2008. Shape-IT: new rapid and accurate algorithm for haplotype inference. BMC Bioinformatics 9:540. doi: 10.1186/147 1-2105-9-540 Delaneau, O., B. Howie, A. J. Cox, J. F. Zagury, and J. Marchini. 2013. Haplotype estimation using sequencing reads. Am. J. Hum. Genet. 93:687-696. doi: 10.1016/j.ajhg.2013.09.002 Delaneau, O., J. Marchini, and J. F. Zagury. 2012. A linear complexity phasing method for thousands of genomes. Nat. Methods 9:179-181. doi: 10.1038/nmeth.1785 Delaneau, O., J. F. Zagury, and J. Marchini. 2013. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10:5-6. doi: 10.1038/nmet h.2307 Dey, S., A. Parveen, K. J. Tarrant, T. Licknack, B. C. Kong, N. B. Anthony, and D. D. Rhoads. 2018. Whole genome resequencing identifies the CPQ gene as a determinant of ascites syndrome in broilers. PLoS One 13:e0189544. doi: 10.1371/journal.pone.0189544 Ding, S. T., Y. H. Ko, B. R. Ou, P. H. Wang, C. L. Chen, M. C. Huang, Y. P. Lee, E. C. Lin, C. F. Chen, H. W. Lin, and W. T. K. Cheng. 2008. The expression of genes related to egg production in the liver of Taiwan country chickens. Asian-Aust. J. Anim. Sci. 21:19-24. doi: 10.5713/ajas.2008.70013 Do, H., A. Vasilescu, W. Carpentier, L. Meyer, G. Diop, T. Hirtzig, C. Coulonges, T. Labib, J. L. Spadoni, A. Therwath, M. Lathrop, F. Matsuda, and J. F. Zagury. 2006a. Exhaustive genotyping of the interleukin-1 family genes and associations with AIDS progression in a French cohort. J. Infect. Dis. 194:1492-1504. doi: 10.1086/508545 Do, H., A. Vasilescu, G. Diop, T. Hirtzig, C. Coulonges, T. Labib, S. C. Heath, J. L. Spadoni, A. Therwath, M. Lathrop, F. Matsuda, and J. F. Zagury. 2006b. Associations of the IL2Rα, IL4Rα, IL10Rα, and IFNγR1 cytokine receptor genes with AIDS progression in a French AIDS cohort. Immunogenet. 58:89-98. doi: 10.1007/s00251-005-0072-3 Dougherty, D. C., and M. M. Sanders. 2005. Estrogen action: revitalization of the chick oviduct model. Trends Endocrinol. Metab. 16:414-419. doi: 10.1016/j.te m.2005.09.001 Evans, A. J., and R. W. Burley. 1987. Proteolysis of apoprotein B during the transfer of very low density lipoprotein from hens' blood to egg yolk. J. Biol. Chem. 262:501-504. Excoffier, L., and M. Slatkin. 1995. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12:921-927. Fan, J. B., A. Oliphant, R. Shen, B. G. Kermani, F. Garcia, K. L. Gunderson, M. Hansen, F. Steemers, S. L. Butler, P. Deloukas, L. Galver, S. Hunt, C. McBride, M. Bibikova, T. Rubano, J. Chen, E. Wickham, D. Doucet, W. Chang, D. Campbell, B. Zhang, S. Kruglyak, D. Bentley, J. Haas, P. Rigault, L. Zhou, J. Stuelpnagel, and M. S. Chee. 2003. Highly parallel SNP genotyping. Cold Spring Harb. Symp. Quant. Biol. 68:69-78. Fan, W. L., C. S. Ng, C. F. Chen, M. Y. Lu, Y. H. Chen, C. J. Liu, S. M. Wu, C. K. Chen, J. J. Chen, C. T. Mao, Y. T. Lai, W. S. Lo, W. H. Chang, and W. H. Li. 2013. Genome-wide patterns of genetic variation in two domestic chickens. Genome Biol. Evol. 5:1376-1392. doi: 10.1093/gbe/evt097 Ferdosi, M. H., J. Henshall, and B. Tier. 2016. Study of the optimum haplotype length to build genomic relationship matrices. Genet. Sel. Evol. 48:75. doi: 10.1186/s 12711-016-0253-6 Ferdosi, M. H., B. P. Kinghorn, J. H. van der Werf, and C. Gondro. 2014. Detection of recombination events, haplotype reconstruction and imputation of sires using half-sib SNP genotypes. Genet. Sel. Evol. 46:11. doi: 10.1186/1297-9686-46-11 Fontanesi, L., M. Tazzoli, V. Russo, and J. Beever. 2010. Genetic heterogeneity at the bovine KIT gene in cattle breeds carrying different putative alleles at the spotting locus. Anim. Genet. 41:295-303. doi: 10.1111/j.1365-2052.2009.02007.x Frederiksen, S. D., P. Karlskov-Mortensen, S. D. Pant, M. Guerin, P. Lesnik, C. B. Jørgensen, S. Cirera, C. S. Bruun, T. Mark, and M. Fredholm. 2017. Haplotypes on pig chromosome 3 distinguish metabolically healthy from unhealthy obese individuals. PLoS One 12:e0178828. doi: 10.1371/journal.pone.0178828 Fu, W., J. C. Dekkers, W. R. Lee, and B. Abasht. 2015. Linkage disequilibrium in crossbred and pure line chickens. Genet. Sel. Evol. 47:11. doi: 10.1186/s12711-015-0098-4 Gabriel, S. B., S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, M. Faggart, S. N. Liu-Cordero, C. Rotimi, A. Adeyemo, R. Cooper, R. Ward, E. S. Lander, M. J. Daly, and D. Altshuler. 2002. The structure of haplotype blocks in the human genome. Science 296:2225-2229. doi: 10.1126/Science1069424 Gao, G., D. B. Allison, and I. Hoeschele. 2009. Haplotyping methods for pedigrees. Hum. Hered. 67:248-266. doi: 10.1159/000194978 Garg, S., M. Martin, and T. Marschall. 2016. Read-based phasing of related individuals. Bioinformatics 32:i234-i242. doi: 10.1093/bioinformatics/btw276 Gibson, G., and S. Muse. 2009. A Primer of Genome Science. 3rd ed. Sinauer Associates, Inc., Massachusetts, USA. Glantz, S. A., B. K. Slinker, and T. B. Neilands. 2016. Primer of applied regression & analysis of variance. 3rd ed. McGraw Hill Edu., New York, NY, USA. Go, Y. Y., E. Bailey, D. G. Cook, S. J. Coleman, J. N. Macleod, K. C. Chen, P. J. Timoney, and U. B. Balasuriya. 2011. Genome-wide association study among four horse breeds identifies a common haplotype associated with in vitro CD3+ T cell susceptibility/resistance to equine arteritis virus infection. J. Virol. 85:13174-13184. doi: 10.1128/jvi.06068-11 Goddard, M. E., and B. J. Hayes. 2007. Genomic selection. J. Anim. Breed. Genet. 124:323-330. doi: 10.1111/j.1439-0388.2007.00702.x Haggman, J., and P. Uimari. 2017. Novel harmful recessive haplotypes for reproductive traits in pigs. J. Anim. Breed. Genet. 134:129-135. doi: 10.1111/jbg.12240 Hayes, B. J., A. J. Chamberlain, H. McPartlan, I. Macleod, L. Sethuraman, and M. E. Goddard. 2007. Accuracy of marker-assisted selection with single markers and marker haplotypes in cattle. Genet. Res. 89:215-220. doi: 10.1017/s001667230 7008865 Hedrick, P. W. 1987. Gametic disequilibrium measures: proceed with caution. Genetics 117:331-341. Heifetz, E. M., J. E. Fulton, N. O'Sullivan, H. Zhao, J. C. Dekkers, and M. Soller. 2005. Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations. Genetics 171:1173-1181. doi: 10.1534/genetics.105.040782 Hill, W. G., and A. Robertson. 1968. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38:226-231. doi: 10.1007/bf01245622 Huang, H. H., and Y. P. Lee. 1991. The general and specific combining abilities of Country chickens: a study of 4*4 diallel cross. J. Chin. Soc. Anim. Sci. 20:27-42. International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695. doi: 10.1038/nature03154 Jancova, P., P. Anzenbacher, and E. Anzenbacherova. 2010. Phase II drug metabolizing enzymes. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 154:103-116. Johansson, K., J. Jarvliden, V. Gogvadze, and R. Morgenstern. 2010. Multiple roles of microsomal glutathione transferase 1 in cellular protection: a mechanistic study. Free Radic. Biol. Med. 49:1638-1645. doi: 10.1016/j.freeradbiomed.2010.08.013 Kamarainen, O. P., S. Solovieva, T. Vehmas, K. Luoma, H. Riihimaki, L. Ala-Kokko, M. Mannikko, and P. Leino-Arjas. 2008. Common interleukin-6 promoter variants associate with the more severe forms of distal interphalangeal osteoarthritis. Arthritis Res. 10:R21. doi: 10.1186/ar2374 Kong, A., G. Masson, M. L. Frigge, A. Gylfason, P. Zusmanovich, G. Thorleifsson, P. I. Olason, A. Ingason, S. Steinberg, T. Rafnar, P. Sulem, M. Mouy, F. Jonsson, U. Thorsteinsdottir, D. F. Gudbjartsson, H. Stefansson, and K. Stefansson. 2008. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40:1068-1075. doi: 10.1038/ng.216 Krzywinski, M., and N. Altman. 2014. Comparing samples-part II. Nat. Methods 11:355-356. doi: 10.1038/nmeth.2900 Lee, Y. P., and H. H. Huang. 1988. Breeding on Taiwan country chicken. J. Chin. Soc. Anim. Sci. 17:29-47. P. 121-132 Lee, Y. P. 2006. Taiwan country chicken: a slow growth breed for eating quality. Symposium COA/INRA Scientific Cooperation in Agriculture. Lewontin, R. C. 1964. The interaction of selection and linkage. I. general considerations; heterotic models. Genetics 49:49-67. Lewontin, R. C., and K. i. Kojima. 1960. The evolutionary dynamics of complex polymorphisms. Evolution 14:458-472. doi: 10.2307/2405995 Li, Y., C. Willer, S. Sanna, and G. Abecasis. 2009. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10:387-406. doi: 10.1146/annurev.genom.9.081307.1 64242 Lien, C. Y., M. Tixier-Boichard, S. W. Wu, W. F. Wang, C. S. Ng, and C. F. Chen. 2017. Detection of QTL for traits related to adaptation to sub-optimal climatic conditions in chickens. Genet. Sel. Evol. 49:39. doi: 10.1186/s12711-017-0314-5 Lin, E. C., Y. H. Wang, C. X. Wang, J. J. Chen, S. C. Lu, C. F. Chen, C. W. Yeh, C. H. Hsieh, H. S. Sun, S. T. Ding, M. C. Huang, S. H. Chiou, B. R. Ou, Y. P. Lee, and W. T. K. Cheng. 2011. Detection and validation of SNPs in Taiwan country chicken EST libraries. Proceedings of the 9th Asia Pacific Poultry Conference. p. 343. Lorenz, A. J., M. T. Hamblin, and J. L. Jannink. 2010. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley. PLoS One 5:e14079. doi: 10.1371/journal.pone.0014079 Mahmoud, A. H., A. M. Mashaly, A. M. Rady, K. M. Al-Anazi, and A. A. Saleh. 2017. Allelic variation of melanocortin-1 receptor locus in Saudi indigenous sheep exhibiting different color coats. Asian-Aust. J. Anim. Sci. 30:154-159. doi: 10.5713/ajas.16.0138 Mann, C. J. 2003. Observational research methods. Research design II: Cohort, cross sectional, and case-control studies. Emerg. Med. J. 20:54-60. doi: 10.1136/emj.20.1.54 Marchini, J., D. Cutler, N. Patterson, M. Stephens, E. Eskin, E. Halperin, S. Lin, Z. S. Qin, H. M. Munro, G. R. Abecasis, and P. Donnelly. 2006. A comparison of phasing algorithms for trios and unrelated individuals. Am. J. Hum. Genet. 78:437-450. McDonald, J. H. 2009. Handbook of Biological Statistics. 3rd ed. Sparky House Publishing, Baltimore, Maryland. Megens, H. J., R. Crooijmans, J. W. M. Bastiaansen, H. H. D. Kerstens, A. Coster, R. Jalving, A. Vereijken, P. Silva, W. M. Muir, H. H. Cheng, O. Hanotte, and M. A. M. Groenen. 2009. Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken. BMC Genet. 10:86. doi: 10.1186/1471-2156-10-86 Meuwissen, T. H., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829. Morton, N. E. 1955. Sequential tests for the detection of linkage. Am. J. Hum. Genet. 7:277-318. Niu, X., T. L. Tyasi, N. Qin, D. Liu, H. Zhu, X. Chen, F. Zhang, S. Yuan, and R. Xu. 2017. Sequence variations in estrogen receptor 1 and 2 genes and their association with egg production traits in Chinese Dagu chickens. J. Vet. Med. Sci. 79:927-934. doi: 10.1292/jvms.17-0014 Nyholt, D. R. 2004. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74:765-769. doi: https://doi.org/10.1086/383251 O'Connell, J., D. Gurdasani, O. Delaneau, N. Pirastu, S. Ulivi, M. Cocca, M. Traglia, J. Huang, J. E. Huffman, I. Rudan, R. McQuillan, R. M. Fraser, H. Campbell, O. Polasek, G. Asiki, K. Ekoru, C. Hayward, A. F. Wright, V. Vitart, P. Navarro, J. F. Zagury, J. F. Wilson, D. Toniolo, P. Gasparini, N. Soranzo, M. S. Sandhu, and J. Marchini. 2014. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 10:e1004234. doi: 10.1371/journal.pge n.1004234 Osborne, R. 1957. The use of sire and dam family averages in increasing the efficiency of selective breeding under a hierarchical mating system. Heredity 11:93. doi: 10.1038/hdy.1957.7 Østergåard, H., B. Kristensen, and S. Andersen. 1989. Investigations in farm animals of associations between the MHC system and disease resistance and fertility. Livest. Sci. 22:49-67. doi: 10.1016/0301-6226(89)90124-3 Pengelly, R. J., A. A. Gheyas, R. Kuo, E. Mossotto, E. G. Seaby, D. W. Burt, S. Ennis, and A. Collins. 2016. Commercial chicken breeds exhibit highly divergent patterns of linkage disequilibrium. Heredity 117:375-382. doi: 10.1038/hdy.2 016.47 Pham, M. H., W. H. Chang, C. Berthouly-Salazar, D. Y. Lin, Y. Sukanya, C. C. Wang, Y. P. Lee, M. Tixier-Boichard, and C. F. Chen. 2013. Genetic characterization of Taiwan commercial native chickens ascertained by microsatellite markers. J. Poult. Sci. 50:290-299. doi: 10.2141/jpsa.0120041 Pham, M. H., X. H. Tran, C. Berthouly-Salazar, M. Tixier-Boichard, C. F. Chen, and Y. P. Lee. 2016. Monitoring of genetic diversity in Taiwan conserved chickens assessed by pedigree and molecular data. Livest. Sci. 184:85-91. doi: 10.1016/j.liv sci.2015.12.013 Popovski, Z., B. Tanaskovska, E. Miskoska-Milevska, S. Andonov, and S. Domazetovska. 2016. Associations of biochemical changes and maternal traits with mutation 1843 (C>T) in the RYR1 gene as a common cause for porcine stress syndrome. Balk. J. Med. Genet. 19:75-80. doi: 10.1515/bjmg-2016-0039 Qanbari, S., M. Hansen, S. Weigend, R. Preisinger, and H. Simianer. 2010. Linkage disequilibrium reveals different demographic history in egg laying chickens. BMC Genet. 11:103. doi: 10.1186/1471-2156-11-103 Qin, Z. S., T. Niu, and J. S. Liu. 2002. Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am. J. Hum. Genet. 71:1242-1247. doi: 10.1086/344207 Quane, K. A., H. Ording, K. E. Keating, B. M. Manning, R. Heine, D. Bendixen, K. Berg, R. Krivosic-Horber, F. Lehmann-Horn, T. Fagerlund, and T. V. McCarthy. 1997. Detection of a novel mutation at amino acid position 614 in the ryanodine receptor in malignant hyperthermia. Br. J. Anaesth. 79:332-337. Ramensky, V., P. Bork, and S. Sunyaev. 2002. Human non‐synonymous SNPs: server and survey. Nucleic Acids Res. 30:3894-3900. doi: 10.1093/nar/gkf493 Rastas, P., M. Koivisto, H. Mannila, and E. Ukkonen. 2005. A Hidden Markov Technique for Haplotype Reconstruction. 2005. International Workshop on Algorithms in Bioinformatics. p. 140-151. Rawlings, J. O., S. G. Pantula, and D. Dickey. 1998. Applied Regression Analysis: A Research Tool. 2nd ed. Springer, Heidelberg, Germany. Rhoads, A., and K. F. Au. 2015. PacBio Sequencing and its applications. Genomics Proteomics Bioinformatics 13:278-289. doi: https://doi.org/10.1016/j.gpb.2015. 08. 002 Sahana, G., U. S. Nielsen, G. P. Aamand, M. S. Lund, and B. Guldbrandtsen. 2013. Novel harmful recessive haplotypes identified for fertility traits in Nordic Holstein cattle. PLoS One 8: e82909. doi: 10.1371/journal.pone.0082909 Sanchez, M. P., T. Tribout, N. Iannuccelli, M. Bouffaud, B. Servin, A. Tenghe, P. Dehais, N. Muller, M. P. Del Schneider, M. J. Mercat, C. Rogel-Gaillard, D. Milan, J. P. Bidanel, and H. Gilbert. 2014. A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality. Genet. Sel. Evol. 46:12. doi: 10.1186/1297-9686-46-12 Sato, S., Y. Uemoto, T. Kikuchi, S. Egawa, K. Kohira, T. Saito, H. Sakuma, S. Miyashita, S. Arata, T. Kojima, and K. Suzuki. 2016. SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population. BMC Genet. 17:60. doi: 10.1186/s12863-016-0368-3 Schmid, M., J. Smith, D. W. Burt, B. L. Aken, P. B. Antin, A. L. Archibald, C. Ashwell, P. J. Blackshear, C. Boschiero, C. T. Brown, S. C. Burgess, H. H. Cheng, W. Chow, D. J. Coble, A. Cooksey, R. P. Crooijmans, J. Damas, R. V. Davis, D. J. de Koning, M. E. Delany, T. Derrien, T. T. Desta, I. C. Dunn, M. Dunn, H. Ellegren, L. Eory, I. Erb, M. Farre, M. Fasold, D. Fleming, P. Flicek, K. E. Fowler, L. Fresard, D. P. Froman, V. Garceau, P. P. Gardner, A. A. Gheyas, D. K. Griffin, M. A. Groenen, T. Haaf, O. Hanotte, A. Hart, J. Hasler, S. B. Hedges, J. Hertel, K. Howe, A. Hubbard, D. A. Hume, P. Kaiser, D. Kedra, S. J. Kemp, C. Klopp, K. E. Kniel, R. Kuo, S. Lagarrigue, S. J. Lamont, D. M. Larkin, R. A. Lawal, S. M. Markland, F. McCarthy, H. A. McCormack, M. C. McPherson, A. Motegi, S. A. Muljo, A. Munsterberg, R. Nag, I. Nanda, M. Neuberger, A. Nitsche, C. Notredame, H. Noyes, R. O'Connor, E. A. O'Hare, A. J. Oler, S. C. Ommeh, H. Pais, M. Persia, F. Pitel, L. Preeyanon, P. Prieto Barja, E. M. Pritchett, D. D. Rhoads, C. M. Robinson, M. N. Romanov, M. Rothschild, P. F. Roux, C. J. Schmidt, A. S. Schneider, M. G. Schwartz, S. M. Searle, M. A. Skinner, C. A. Smith, P. F. Stadler, T. E. Steeves, C. Steinlein, L. Sun, M. Takata, I. Ulitsky, Q. Wang, Y. Wang, W. C. Warren, J. M. Wood, D. Wragg, and H. Zhou. 2015. Third report on chicken genes and chromosomes 2015. Cytogenet. Genome Res. 145:78-179. doi: 10.1159/000430927 Sharp, P. J. 1997. Reproduction in poultry. Livest. Sci. 48:83-84. doi: 10.1016/S0301-6226(97)89737-0 Shen, M., L. Qu, M. Ma, T. Dou, J. Lu, J. Guo, Y. Hu, X. Wang, Y. Li, K. Wang, and N. Yang. 2017. A genome-wide study to identify genes responsible for oviduct development in chickens. PLoS One 12:e0189955. doi: 10.1371/journal.pone.01 89955 Sogorb, M. A., and E. Vilanova. 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Lett. 128:215-228. Soller, M., and J. S. Beckmann. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67:25-33. doi: 10.1007/bf0030 3917 Stephens, M., and P. Donnelly. 2003. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73:1162-1169. doi: 10.1086/379378 Stephens, M., and P. Scheet. 2005. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76:449-462. doi: 10.1086/428594 Stephens, M., N. J. Smith, and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68:978-989. doi: 10.1086/319501 Szklarczyk, D., A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Simonovic, A. Roth, A. Santos, K. P. Tsafou, M. Kuhn, P. Bork, L. J. Jensen, and C. von Mering. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:D447-D452. doi: 10.1093/nar/gku1003 Takahashi, H., K. Rikimaru, M. Komatsu, Y. Uemoto, and K. Suzuki. 2014. Association between motilin receptor gene haplotypes and growth traits in Japanese Hinai-dori crossbred chickens. Asian-Aust. J. Anim. Sci. 27:316-323. doi: 10.5713/ajas.2013.13500 Takahashi, H., O. Sasaki, K. Nirasawa, and T. Furukawa. 2010. Association between ovocalyxin-32 gene haplotypes and eggshell quality traits in an F2 intercross between two chicken lines divergently selected for eggshell strength. Anim. Genet. 41:541-544. doi: 10.1111/j.1365-2052.2010.02034.x Tewhey, R., V. Bansal, A. Torkamani, E. J. Topol, and N. J. Schork. 2011. The importance of phase information for human genomics. Nat. Rev. Genet. 12:215-223. doi: 10.1038/nrg2950 The 1000 Genomes Project Consortium. 2015. A global reference for human genetic variation. Nature 526:68-74. doi: 10.1038/nature15393 The International HapMap Consortium. 2003. The International HapMap Project. Nature 426:789-796. doi: 10.1038/nature02168 The International HapMap Consortium. 2005. A haplotype map of the human genome. Nature 437:1299-1320. doi: 10.1038/nature04226 van den Oord, E. J. C. G., and B. M. Neale. 2003. Will haplotype maps be useful for finding genes? Mol. Psychiatry 9:227-236. doi: 10.1038/sj.mp.4001449 VanRaden, P. M., K. M. Olson, D. J. Null, and J. L. Hutchison. 2011. Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94:6153-6161. doi: 10.3168/jds.2011-4624 Vignal, A., D. Milan, M. SanCristobal, and A. Eggen. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34:275-305. doi: 10.1051/gse:2002009 Wall, J. D., and J. K. Pritchard. 2003. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 4:587-597. doi: 10.1038/nrg1123 Wang, Y. H. 2008. Detection of novel SNPs in Taiwan country chicken EST libraries. Master Thesis. National Taiwan University, Taipei, Taiwan. Wheeler, D. L., T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, L. Y. Geer, Y. Kapustin, O. Khovayko, D. Landsman, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, V. Miller, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, K. Sirotkin, A. Souvorov, G. Starchenko, R. L. Tatusov, T. A. Tatusova, L. Wagner, and E. Yaschenko. 2007. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 35WSX :D5-D12. doi: 10.1093/nar/gkl1031 Williams A , L., N. Patterson, J. Glessner, H. Hakonarson, and D. Reich. 2012. Phasing of many thousands of genotyped samples. Am. J. Hum. Genet. 91:238-251. doi: 10.1016/j.ajhg.2012.06.013 Xu, J., X. Gao, X. Li, Q. Ye, E. Jebessa, B. A. Abdalla, and Q. Nie. 2017. Molecular characterization, expression profile of the FSHR gene and its association with egg production traits in muscovy duck. J. Genet. 96:341-351. Xu, Z., C. Ji, Y. Zhang, Z. Zhang, Q. Nie, J. Xu, D. Zhang, and X. Zhang. 2016. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. BMC Genomics 17:594. doi: 10.1186/s12864-016-2861-5 Zerbino, D. R., P. Achuthan, W. Akanni, M R. Amode, D. Barrell, J. Bhai, K. Billis, C. Cummins, A. Gall, C. G. Girón, L. Gil, L. Gordon, L. Haggerty, E. Haskell, T. Hourlier, O. G. Izuogu, S. H. Janacek, T. Juettemann, J. K. To, M. R. Laird, I. Lavidas, Z. Liu, J. E. Loveland, T. Maurel, W. McLaren, B. Moore, J. Mudge, D. N. Murphy, V. Newman, M. Nuhn, D. Ogeh, C. K. Ong, A. Parker, M. Patricio, H. S. Riat, H. Schuilenburg, D. Sheppard, H. Sparrow, K. Taylor, A. Thormann, A. Vullo, B. Walts, A. Zadissa, A. Frankish, S. E. Hunt, M. Kostadima, N. Langridge, F. J. Martin, M. Muffato, E. Perry, M. Ruffier, D. M. Staines, S. J. Trevanion, B. L. Aken, F. Cunningham, A. Yates, and P. Flicek. 2018. Ensembl 2018. Nucleic Acids Res. 46:D754-D761. doi: 10.1093/nar/gkx1098 Zhang, K., B. H. Cheng, L. L. Yang, Z. P. Wang, H. L. Zhang, S. S. Xu, S. Z. Wang, Y. X. Wang, H. Zhang, and H. Li. 2017. Identification of a potential functional single nucleotide polymorphism for fatness and growth traits in the 3'-untranslated region of the PCSK1 gene in chickens. J. Anim. Sci. 95:4776-4786. doi: 10.2527/jas2017.1706 Zhang, S., H. Li, and H. Shi. 2006. Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9- polymorphism reveals association with body growth and obesity. Poult. Sci. 85:178-184. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72378 | - |
| dc.description.abstract | 單倍型是染色體區域上的一組傾向於一起遺傳的單核苷酸多型性,比起單個單核苷酸多型性,單倍型可能可以整合一個基因上不同功能的多型性。此外,單倍型可同時與幾種具有功能的多型性有關聯,以減少統計檢測中所需的標識數量,因此可以增加這些檢測的效力。本研究的目的在於評估一個基因上單核苷酸多型性之間的連鎖不平衡之後重組單倍型,並比較使用單核苷酸多型性和單倍型作為遺傳標識的有效性。
自1980年代至今,臺灣土雞L2產蛋品系已選育產蛋數超過三十代。本研究使用臺灣土雞L2品系437隻。其中168隻雞具有40週齡總產蛋數的育種價估計值,使用於關聯性分析。在先前的研究中發現在L2產蛋品系和B產肉品系之間,有29個基因的非同義單核苷酸多型性具有顯著不同的基因型頻率。我們挑選其中11個與脂質代謝有關的基因,並在這些基因設計了96個單核苷酸多型性。在每個基因中,每距離1000至3000個鹼基對選一個單核苷酸多型性位點以覆蓋一整個基因。使用96-plex GoldenGate® assay進行基因型鑑定,剩下435隻雞的65個單核苷酸多型性的結果做後續的分析。在重建單倍型之前,我們估計一個基因上單核苷酸多型性之間的連鎖不平衡以確保具有足夠且有效的連鎖。共有11個基因上的49個單核苷酸多型性具有足夠連鎖不平衡(≥0.77),使用兩種不同的軟體(PHASE和SHAPEIT)將其重組成單倍型。最後,使用變異數分析和逐步迴歸分別分析單核苷酸多型性和單倍型與育種價估計值之間的關聯性。 在一個基因,距離適當的單核苷酸多型性之間若有強的連鎖不平衡則可重組單倍型。我們成功地在11個與脂質代謝相關基因重組57個單倍型。四十週齡總產蛋數的育種價估計值和單核苷酸多型性之間,在基因的層次上並沒有顯著的關聯性。相較之下,在5個基因上有10個單倍型與育種價估計值具有顯著相關。這5個基因的10個單倍型共可解釋33%的育種價估計值變異。由於一個基因上的單倍型是種交替基因效應,具有可相加性,因此我們可透過尋找其他也有顯著效應的單倍型逐步累加其效應:那些對EBV有正向影響的單倍型可用於選拔,負向影響的單倍型可用於剔除。總結而言,在四十週齡總產蛋數之育種價估計值的關聯性分析,單倍型比單核苷酸多型性更有效果。在數量性狀的標識輔助選拔中,單倍型可能比單核苷酸多型性更適合用於遺傳標識。在未來,也可將單倍型推展到全基因體關聯分析進行研究。 | zh_TW |
| dc.description.abstract | Haplotype is a cluster of SNPs on a region of chromosome tending to be inherited together. Haplotypic information might integrate effects of different SNPs on physiological function rather than using single SNP in a region. Haplotype could link with several functional polymorphisms simultaneously to reduce the number of markers needed in the statistical tests, so that may increase the power of those tests. The objective of this study is to estimate linkage disequilibrium (LD) in reconstructing haplotypes and to compare the effectiveness of utilizing SNP and haplotype as genetic marker.
The L2 line of Taiwan country chicken has been selected for egg production since 1980’s. There were 437 chicken of two generations in L2 line genotyped for haplotype reconstruction. Among them, 168 chicken with estimated breeding value of egg number laid up to 40 weeks (EBV of EN40) were used in association analysis. In the previous study, non-synonymous SNPs from 29 genes were found with significantly different genotypic frequencies between egg production L2 line and meat production B line. Among them, 11 genes with 96 SNP sites associated with lipid metabolism were studied. In each gene, a SNP site was selected per 1,000 to 3,000 base pairs to cover the whole gene. After genotyping with 96-plex GoldenGate® assay, there were 435 chicken with call rate > 0.9 and 65 SNPs with minor allele frequency > 0.01. Before reconstructing haplotype, we estimate LD between SNPs in a gene to verify their linkage and informativity. Forty night SNPs of 11 genes with sufficient LD (≥ 0.77) were retained to reconstruct haplotypes using two different software packages – PHASE and SHAPEIT. Finally, the association between markers and those EBVs was analyzed by using ANOVA for SNP and stepwise regression for haplotype. SNPs within an adequate distance with strong LD could be reconstructed into haplotypes. Totally, we successfully reconstructed 57 haplotypes in 11 genes. There is not significant result in the association between SNP and EBV of EN40. In contrast, there are 10 haplotypes in 5 genes significantly associated with the EBVs. These haplotypes in the 5 genes might explain 33% of EBV variation. Because the allelic effect of haplotype is additive, we might continually find other significant haplotypes to accumulate their effects in a particular population: those haplotypes with positive effect on EBV could be applied to selection, and the negative ones could be used to cull. To sum up, in association with EBV of EN40, haplotype is more powerful than SNP, and might be potentially better genetic marker than SNP in marker-assisted selection for quantitative trait. In the future, it might be feasible to further exploit haplotype in genome-wide association study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:38:46Z (GMT). No. of bitstreams: 1 ntu-107-R05626001-1.pdf: 4354749 bytes, checksum: 53a37669a8b9095b0d0e22454ffc318e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝......................................................i
摘要....................................................iii ABSTRACT..................................................v CONTENTS................................................vii LIST OF FIGURES..........................................ix LIST OF TABLES...........................................xi Chapter 1 Introduction..............................1 Chapter 2 Literature Reviews........................2 2.1 The use of genetic marker.......................2 2.1.1 Genetic marker............................2 2.1.2 Marker-assisted selection.................3 2.2 Haplotype information...........................3 2.2.1 What is haplotype.........................3 2.2.2 Importance of phase information...........6 2.2.3 Application of phase information..........9 2.2.4 Haplotype reconstruction.................11 2.3 Taiwan country chicken.........................15 2.3.1 Origins of Taiwan country chicken........15 2.3.2 Taiwan country chicken L2 and B lines....19 2.3.3 Linkage disequilibrium in chicken........19 2.4 Association analysis...........................21 2.4.1 SNP-based association....................21 2.4.2 Haplotype-based association..............23 Chapter 3 Materials and Methods....................25 3.1 Animal resources and estimated breeding value..25 3.2 Candidate gene and SNP selection...............26 3.3 Design of 96-plex GoldenGate® assay............31 3.4 GoldenGate® genotyping assay...................34 3.5 Linkage disequilibrium (LD) analysis...........34 3.6 Reconstruction of haplotypes...................35 3.7 SNPs association analysis......................35 3.8 Haplotype association analysis.................36 Chapter 4 Results..................................38 4.1 GoldenGate® genotyping assay...................38 4.2 Linkage disequilibrium.........................38 4.3 Haplotype reconstruction.......................45 4.4 SNP association................................50 4.5 Haplotype association..........................53 4.5.1 Stepwise backward regression.............53 4.5.2 Multiple regression......................57 Chapter 5 Discussion...............................61 5.1 Extent of LD and haplotype reconstruction......61 5.2 Effect of haplotypes as genetic marker.........65 5.3 Application and future.........................68 Chapter 6 Conclusion...............................69 REFERENCE................................................71 SUPPLEMENT...............................................89 | |
| dc.language.iso | en | |
| dc.subject | 單核?酸多型性標識 | zh_TW |
| dc.subject | 單倍型標識 | zh_TW |
| dc.subject | 育種價 | zh_TW |
| dc.subject | 產蛋 | zh_TW |
| dc.subject | 臺灣土雞 | zh_TW |
| dc.subject | Taiwan country chicken | en |
| dc.subject | Haplotype marker | en |
| dc.subject | Single nucleotide polymorphism marker | en |
| dc.subject | Estimated breeding value | en |
| dc.subject | Egg production | en |
| dc.title | 在臺灣土雞L2品系比較使用單核苷酸多型性標識和單倍型標識的效力 | zh_TW |
| dc.title | The comparison of efficacy for utilizing haplotype and SNP markers in the L2 line of Taiwan country chicken | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃三元(San-Yuan Huang),王佩華(Pei-Hwa Wang) | |
| dc.subject.keyword | 單核?酸多型性標識,單倍型標識,育種價,產蛋,臺灣土雞, | zh_TW |
| dc.subject.keyword | Single nucleotide polymorphism marker,Haplotype marker,Estimated breeding value,Egg production,Taiwan country chicken, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU201803222 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
