請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72377
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖淑貞 | |
dc.contributor.author | Zhong-Ting Chiu | en |
dc.contributor.author | 邱仲廷 | zh_TW |
dc.date.accessioned | 2021-06-17T06:38:42Z | - |
dc.date.available | 2018-08-30 | |
dc.date.copyright | 2018-08-30 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-15 | |
dc.identifier.citation | 1. Rozalski, A., Z. Sidorczyk, and K. Kotelko, Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev, 1997. 61(1): p. 65-89.
2. Foris, L. and J. Snowden, Proteus Mirabilis Infections, in StatPearls. 2017, StatPearls Publishing StatPearls Publishing LLC.: Treasure Island (FL). 3. Schaffer, J.N. and M.M. Pearson, Proteus mirabilis and Urinary Tract Infections. Microbiology spectrum, 2015. 3(5): p. 10.1128/microbiolspec.UTI-0017-2013. 4. Armbruster, C.E. and H.L. Mobley, Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol, 2012. 10(11): p. 743-54. 5. Mobley, H.L., et al., Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun, 1996. 64(12): p. 5332-40. 6. Mobley, H.L., et al., Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun, 1991. 59(6): p. 2036-42. 7. Jacobsen, S.M. and M.E. Shirtliff, Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2011. 2(5): p. 460-5. 8. Coker, C., et al., Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect, 2000. 2(12): p. 1497-505. 9. Drechsel, H., et al., Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol, 1993. 175(9): p. 2727-33. 10. Harshey, R.M., Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol, 2003. 57: p. 249-73. 11. Rauprich, O., et al., Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol, 1996. 178(22): p. 6525-38. 12. Givskov, M., et al., Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol, 1998. 180(3): p. 742-5. 13. Alteri, C.J., et al., Multicellular bacteria deploy the type VI secretion system to preemptively strike neighboring cells. PLoS Pathog, 2013. 9(9): p. e1003608. 14. Russell, A.B., et al., A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe, 2012. 11(5): p. 538-49. 15. Alteri, C.J. and H.L. Mobley, The Versatile Type VI Secretion System. Microbiol Spectr, 2016. 4(2). 16. Pukatzki, S., et al., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A, 2006. 103(5): p. 1528-33. 17. Mougous, J.D., et al., A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006. 312(5779): p. 1526-30. 18. Bingle, L.E., C.M. Bailey, and M.J. Pallen, Type VI secretion: a beginner's guide. Curr Opin Microbiol, 2008. 11(1): p. 3-8. 19. Pukatzki, S., et al., Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15508-13. 20. Leiman, P.G., et al., Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A, 2009. 106(11): p. 4154-9. 21. Ma, J., et al., PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ Microbiol, 2016. 22. Sana, T.G., et al., Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A, 2016. 113(34): p. E5044-51. 23. Silverman, J.M., et al., Structure and regulation of the type VI secretion system. Annu Rev Microbiol, 2012. 66: p. 453-72. 24. Aschtgen, M.S., et al., The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol Microbiol, 2010. 75(4): p. 886-99. 25. Felisberto-Rodrigues, C., et al., Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog, 2011. 7(11): p. e1002386. 26. Zoued, A., et al., Architecture and assembly of the Type VI secretion system. Biochim Biophys Acta, 2014. 1843(8): p. 1664-73. 27. Aschtgen, M.S., et al., SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol, 2008. 190(22): p. 7523-31. 28. Ma, L.S., J.S. Lin, and E.M. Lai, An IcmF family protein, ImpLM, is an integral inner membrane protein interacting with ImpKL, and its walker a motif is required for type VI secretion system-mediated Hcp secretion in Agrobacterium tumefaciens. J Bacteriol, 2009. 191(13): p. 4316-29. 29. Ma, L.S., F. Narberhaus, and E.M. Lai, IcmF family protein TssM exhibits ATPase activity and energizes type VI secretion. J Biol Chem, 2012. 287(19): p. 15610-21. 30. Cianfanelli, F.R., L. Monlezun, and S.J. Coulthurst, Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends in Microbiology, 2016. 24(1): p. 51-62. 31. Shneider, M.M., et al., PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 2013. 500(7462): p. 350-3. 32. Cianfanelli, F.R., et al., VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog, 2016. 12(6): p. e1005735. 33. Busby, J.N., et al., The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature, 2013. 501(7468): p. 547-50. 34. Koskiniemi, S., et al., Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A, 2013. 110(17): p. 7032-7. 35. Willett, J.L.E., et al., Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proceedings of the National Academy of Sciences of the United States of America, 2015. 112(36): p. 11341-11346. 36. Chou, S., et al., Structure of a peptidoglycan amidase effector targeted to Gram-negative bacteria by the type VI secretion system. Cell Rep, 2012. 1(6): p. 656-64. 37. Whitney, J.C., et al., Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem, 2013. 288(37): p. 26616-24. 38. Russell, A.B., et al., Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 2013. 496(7446): p. 508-12. 39. Unterweger, D., B. Kostiuk, and S. Pukatzki, Adaptor Proteins of Type VI Secretion System Effectors. Trends Microbiol, 2017. 25(1): p. 8-10. 40. Budding, A.E., et al., The Dienes Phenomenon: Competition and Territoriality in Swarming Proteus mirabilis. Journal of Bacteriology, 2009. 191(12): p. 3892-3900. 41. Bode, N.J., et al., Transcriptional analysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis. Infect Immun, 2015. 83(6): p. 2542-56. 42. Hood, R.D., et al., A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 2010. 7(1): p. 25-37. 43. Brooks, T.M., et al., Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem, 2013. 288(11): p. 7618-25. 44. Miyata, S.T., et al., Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun, 2011. 79(7): p. 2941-9. 45. Aubert, D.F., R.S. Flannagan, and M.A. Valvano, A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun, 2008. 76(5): p. 1979-91. 46. Moscoso, J.A., et al., The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol, 2011. 13(12): p. 3128-38. 47. Chakraborty, S., et al., Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem, 2011. 286(45): p. 39417-30. 48. Salomon, D., et al., Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One, 2013. 8(4): p. e61086. 49. Pieper, R., et al., Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology, 2009. 155(Pt 2): p. 498-512. 50. Bernard, C.S., et al., Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol, 2011. 193(9): p. 2158-67. 51. Zheng, J., B. Ho, and J.J. Mekalanos, Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One, 2011. 6(8): p. e23876. 52. Navarre, W.W., et al., Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev, 2007. 21(12): p. 1456-71. 53. Lucchini, S., et al., H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog, 2006. 2(8): p. e81. 54. Castang, S., et al., H-NS family members function coordinately in an opportunistic pathogen. Proc Natl Acad Sci U S A, 2008. 105(48): p. 18947-52. 55. Gode-Potratz, C.J. and L.L. McCarter, Quorum sensing and silencing in Vibrio parahaemolyticus. J Bacteriol, 2011. 193(16): p. 4224-37. 56. Shalom, G., J.G. Shaw, and M.S. Thomas, In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology, 2007. 153(Pt 8): p. 2689-99. 57. Busby, S. and R.H. Ebright, Transcription activation by catabolite activator protein (CAP). J Mol Biol, 1999. 293(2): p. 199-213. 58. Weickert, M.J. and S. Adhya, The galactose regulon of Escherichia coli. Mol Microbiol, 1993. 10(2): p. 245-51. 59. Bott, M., Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol, 1997. 167(2-3): p. 78-88. 60. Peterkofsky, A. and C. Gazdar, Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci U S A, 1974. 71(6): p. 2324-8. 61. Lawson, C.L., et al., Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol, 2004. 14(1): p. 10-20. 62. Savery, N., V. Rhodius, and S. Busby, Protein-protein interactions during transcription activation: the case of the Escherichia coli cyclic AMP receptor protein. Philos Trans R Soc Lond B Biol Sci, 1996. 351(1339): p. 543-50. 63. Niu, W., et al., Transcription Activation at Class II CAP-Dependent Promoters: Two Interactions between CAP and RNA Polymerase. Cell, 1996. 87(6): p. 1123-1134. 64. Beatty, C.M., et al., Cyclic AMP receptor protein-dependent activation of the Escherichia coli acsP2 promoter by a synergistic class III mechanism. J Bacteriol, 2003. 185(17): p. 5148-57. 65. Reading, N.C., et al., A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol, 2007. 189(6): p. 2468-76. 66. Hughes, D.T. and V. Sperandio, Inter-kingdom signalling: communication between bacteria and their hosts. Nature Reviews Microbiology, 2008. 6(2): p. 111-120. 67. Xiao, J., et al., Identification of qseEGF genetic locus and its roles in controlling hemolytic activity and invasion in fish pathogen Edwardsiella tarda. Lett Appl Microbiol, 2012. 55(2): p. 91-8. 68. de Lorenzo, V., et al., Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol, 1990. 172(11): p. 6568-72. 69. Schweizer, H.P. and T.T. Hoang, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene, 1995. 158(1): p. 15-22. 70. Wu, Y. and F.W. Outten, IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol, 2009. 191(4): p. 1248-57. 71. Chen, M.W., et al., Structural insights into the regulatory mechanism of the response regulator RocR from Pseudomonas aeruginosa in cyclic Di-GMP signaling. J Bacteriol, 2012. 194(18): p. 4837-46. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72377 | - |
dc.description.abstract | Proteus mirabilis為革蘭氏陰性的兼性厭氧菌,是造成泌尿道感染的病原菌之一,主要在長期使用尿導管的病人中造成伺機性感染。細菌發展出許多調控機制,適應環境中各種變化,以利自身生存。第六型分泌系統 (Type VI Secretion System, T6SS) 是細菌間用來彼此競爭的武器之一,除了在同種及不同菌種之間競爭外,T6SS亦會作用在真核細胞上。參考文獻指出,T6SS會受到環境相關或自身操縱組的regulators所調控,且T6SS所分泌的effector proteins (toxins) 的種類及功能有很多,原核及真核細胞都可能為其作用標的。
本實驗室先前發現P. mirabilis中Crp 會正向調控T6SS結構基因及各套effector operons的表現,並在殺菌試驗中觀察到crp突變株會受野生株所殺,而crp過度表現株則會殺野生珠。VipA及VipB為包覆在Hcp外圍的管狀外鞘,且此外鞘具有收縮性,藉由VipA/B的伸縮可將上述穿刺裝置打出。因此本研究建立vipAB突變株來探討Crp參與殺菌試驗之過程,觀察到野生株與crp過度表現株皆須需透過T6SS攻擊菌株。 vipAB突變株中gentamicin resistant cassette含terminator,因此利用real-time PCR調查出vipAB突變會影響下游T6SS結構基因表現,且有三組hcp-vgrG effector operons基因表現會大幅受到抑制。接著透過Protein BLAST,發現基因編號2057編碼Fis family transcriptional regulator (TssKFis)。首先藉由tssKfis過度表現,探討TssKFis在P. mirabilis對於T6SS的調控。在reporter assay中,tssKfis過度表現會使得野生株中三組hcp-vgrG effector operons的promoter活性上升;T6SS結構操縱子則下降。再者,利用tssKfis突變株觀察到P. mirabilis N2中三組hcp-vgrG effector operons確實會受到TssKFis調控。 綜合上述結果,藉由vipAB突變證實Crp會透過調控P. mirabilis N2中T6SS的表現,來參與殺菌過程。此外,我們推論T6SS結構操縱子中的TssKFis會調控T6SS的表現。 | zh_TW |
dc.description.abstract | Proteus mirabilis with the swarming characteristic often causes urinary tract infections occurring mainly in patients with the long-term implantation of urinary catheters. Bacteria have developed many regulatory mechanisms to adapt to environmental changes and pressures for survival. The type VI secretion system (T6SS), a widespread multi-protein machine in Gram-negative bacteria, delivers effectors to compete with other bacteria or infect eukaryotic hosts. Based on the analysis of P. mirabilis N2 transcriptome, T6SS is regulated by a global regulator, cAMP receptor protein (Crp). Therefore, we investigate the role of Crp in T6SS expression and associated functions.
Our previous studies delineated that Crp positively regulates T6SS structure and hcp-vgrG effector operons in P. mirabilis. Furthermore, crp would be attacked by wild-type; wild-type got hurt by crp overexpression strain in killing assay. VipA and VipB are contractile sheath proteins surrounding Hcp tube and contraction of the VipA/B pushes the Hcp-VgrG needle out of the cell. In this study, we established vipAB strain to investigate Crp-mediated killing process and found that T6SS is necessary for wild-type and crp overexpression strain to compete with prey strains。 Due to the presence of a transcriptional terminator downstream the gentamicin resistant cassette (gmc) in vipAB, we confirmed the impairment of gene expression downstream the gmc by the real-time PCR. Among them, we found that gene number 2057 coding Fis family transcriptional regulator (TssKFis) in P. mirabilis by the Protein BLAST. In the beginning, we utilized tssKfis overexpression to investigate the regulation of TssKFis to T6SS in P. mirabilis. tssKfis overexpression increased promoter activity of three hcp-vgrG effector operons and decreased the T6SS structure operon by reporter assay. We found vipAB defect also dramatically decreased mRNA level of hcp-vgrG effector genes. Recently, we constructed tssKfis to prove that three of four hcp-vgrG effector operons be be regulated by TssKFis in P. mirabilis N2. In conclusion, we demonstrate that T6SS is critical for Crp mediated killing process in P. mirabilis N2. Moreover, TssKFis in T6SS structure operon can regulate T6SS expression. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:38:42Z (GMT). No. of bitstreams: 1 ntu-107-R05424018-1.pdf: 9142309 bytes, checksum: f6f1ef493c18d9444430c27a4225a675 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III Abstract V 目錄 VII 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第一節 奇異變形桿菌 (Proteus mirabilis) 基本介紹 1 第二節 Proteus mirabilis的致病因子 1 第三節 奇異變形桿菌的表面移行能力及其調控 3 第四節 第六型分泌系統 (Type VI Secretion System, T6SS) 4 第五節 Crp及QseF簡介 8 第六節 研究動機與目的 10 第二章 實驗材料與方法 11 第一節 實驗設計 11 第二節 實驗材料 12 第三節 vipAB突變株建構方法 14 第四節 分析P. mirabilis野生株及突變株之間的競爭 29 第五節 基因表達與蛋白質調控 34 第六節 分析表現型 (phenotype) 及毒力因子 (virulence factor) 41 第三章 實驗結果 45 第一節 P. mirabilis vipAB突變株之建立與確認 45 第二節 vipAB突變株表現型及毒力因子之分析 49 第三節 Crp調控T6SS之競爭能力分析 53 第四節 分析vipAB突變於T6SS之影響 61 第五節 P. mirabilis tssKfis突變株之建立與確認 66 第六節 分析tssKfis突變株於T6SS調控之影響 68 第四章 結論與討論 70 第一節 結論 70 第二節 討論 71 第三節 未來展望 73 第五章 表 74 附錄 82 參考文獻 95 | |
dc.language.iso | zh-TW | |
dc.title | cAMP受體蛋白質與TssKFis蛋白質調控尿道致病性奇異變形桿菌
第六型分泌系統之研究 | zh_TW |
dc.title | Regulation of Type VI Secretion System in Uropathogenic
Proteus mirabilis by cAMP receptor protein and TssKFis | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄧麗珍,楊翠青,邱浩傑 | |
dc.subject.keyword | 奇異變形桿菌,第六型分泌系統, | zh_TW |
dc.subject.keyword | Proteus mirabilis,Type VI Secretion System, | en |
dc.relation.page | 100 | |
dc.identifier.doi | 10.6342/NTU201803666 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 8.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。