Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72365
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹益慈
dc.contributor.authorYu-Cheng Hsuen
dc.contributor.author許育晟zh_TW
dc.date.accessioned2021-06-17T06:37:55Z-
dc.date.available2023-09-03
dc.date.copyright2018-09-03
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation1. (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290 − 1309. (b) Hahn, F. E.; Jahnke, M. C. Angew. Chem. Int. Ed. 2008, 47, 3122 – 3172. (c) Díez-González, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612 − 3676. (d) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606 − 5655.
2. Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 3206 − 3209.
3. Wanzlick, H. W.; Kleiner, H. J. Angew. Chem. 1961, 73, 493.
4. Öfele, K. J. Organomet. Chem. 1968, 12, 42.
5. Wanzlick, H. W.; Schönherr, H. J. Angew. Chem., Int. Ed. 1968, 7, 141.
6. Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361 − 363.
7. (a) Boehme, C.; Frenking, G. Organometallics 1998, 17, 5801 − 5809. (b) Lee, M. T.; Hu, C. H. Organometallics, 2004, 23, 976 − 983.
8. Daoust, K. J.; Hernandez, S. M.; Konrad, K. M.; Mackie, I. D.; Winstanley, J.; Johnson, R. P.Org. Chem. 2006, 71, 5708 – 5714.
9. Saalfrank, R. W.; Maid, H. Chem. Commun. 2005, 5953 – 5967.
10. Fürstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Angew. Chem., Int. Ed. 2008, 47, 3210 − 3214.
11. Chen, W. C.; Hsu, Y. C.; Lee, C. Y.; Yap, G. P. A.; Ong, T.-G. Organometallics 2013, 32, 2435 – 2442
12. Chen, W. C.; Lee, C.-Y.; Lin, B. C.; Hsu, Y. C.; Shen, J. S.; Hsu, C. P.; Yap, G. P. A.; Ong, T. G. J. Am. Chem. Soc. 2014, 136, 914 − 917.
13. Chen, W. C.; Shen, J. S.; Jurca, T.; Peng, C. J.; Lin, Y. H.; Wang, Y. P.; Shih, W. C.; Yap, G. P. A.; Ong, T. G. Angew. Chem. Int. Ed. 2015, 54,15207 − 15212.
14. Leis, W.; Mayer, H. A.; Kaska, W. C. Coord. Chem. Rev. 2008, 252, 1787 − 1797.
15. a)Lee, C. I.; Zhou, J.; Ozerov, O. V.; J. Am. Chem. Soc. 2013, 135, 3560 − 3566; b) Selander, N.; Szabo, K. J. Chem. Rev. 2011, 111, 2048 − 2076; c)DeMott, J. C.; Bhuvanesh, N.; Ozerov, O. V. Chem. Sci., 2013, 4, 642 – 649; d) Choi, J.; Roy MacArthur, A. H.; Brookhart, M.; Goldman, A. S. Chem. Rev. 2011, 111, 1761−1779; e)Benito-Garagorri, D.; Kirchner, K. Acc. Chem. Res. 2008, 41, 201 − 213.
16. Goldfogel, M. J.; Roberts, C. C.; Meek, S. J.; J. Am. Chem. Soc. 2014, 136, 6227 – 6230.
17. Roberts, C. C.; Matías, D. M.; Goldfogel, M. J.; Meek, S.J. J. Am. Chem. Soc. 2015, 137, 6488 – 6491.
18. Shaw, M.H.; Twilton J.; MacMillan D.W.C. J. Org. Chem. 2016, 81, 6898 – 6926.
19. Prier, C. K.; Rankic D. A.; MacMillan D. W. C. Chem. Rev. 2013, 113, 5322 – 5363.
20. Zuo, Z. W.; Ahneman D. T.; Chu L. L.; Terrett J. A.; Doyle A. G.; MacMillan D. W. C. Science, 2014, 345, 437 – 440 .
21. Welin, E. R.; Le C.; Arias-Rotondo D. M.; McCusker J. K.; MacMillan D. W. C. Science, 2017, 355, 380 – 384.
22. Gao, Y. X.; Chang, L.; Shi, H.; Liang, B.; Wongkhan, K.; Chaiyaveij, D.; Batsanov, A. S.; Marder, T. B.; Li, C. C.; Yang, Z.; Huanga, Y. Adv. Synth. Catal. 2010, 352, 1955 – 1966.
23. Clavier, H.; Correa, A.; Cavallo, L.; Escudero-Adán, E. C.; Benet-Buchholz, J.; Slawin, A. M. Z.; Nolan, S. P. Eur. J. Inorg. Chem. 2009, 13, 1767 – 1773.
24. Wu, L. Y.; Hao, X. Q.; Xu, Y. X,; Jia, M. Q.; Wang, Y. N.; Gong, J. F.; Song. M. P. Organometallics 2009, 28, 3369 – 3380.
25. de Figueiredo, R. M.; Suppo J. S.; Campagne J. M. Chem. Rev. 2016, 116, 12029 – 12122.
26. Papadopoulos, G. N.; Kokotos, C. G. J. Org. Chem. 2016, 81, 7023 – 7028.
27. Bode, J. W. Current Opinion in Drug Discovery & Development , 2006, 9, 765 – 775.
28. Leow, D. Org. Lett. 2014, 16, 5812 – 5815.
29. Zhang, E. L.; Tian H. W.; Xu S. D.; Yu X. C.; Xu Q. Org. Lett. 2013, 15, 2704 – 2707.
30. .Kalyani, D.; McMurtrey K. B.; Neufeldt S. R.; Sanford M.S. J. Am. Chem. Soc. 2011, 133, 18566 – 18569.
31. Ghosh, I.; Marzo L.; Das A.; Shaikh R.; Konig B. Acc. Chem. Res. 2016, 49, 1566 – 1577.
32. Shao, Y.; Gan Z.; Epifanovsky E.; Gilbert A. T. B.; Wormit M.; Kussmann J. Mol. Phys. 2015, 113, 184.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72365-
dc.description.abstract我們成功合成雙吡啶三牙基彎曲型同碳雙碳烯 (carbodicarbene)並且得到其單晶結構,目前來說是第一個相關結構之結果,其中心碳-碳-碳角度143°,相較於過去我們實驗室之異丙基結構來說,角度更來的大,更具備連烯烃 (Allene) 之性質,同時我們也利用其前驅物合成三牙基同碳雙碳烯配位之鈀金屬錯化物,並且藉由理論計算得知其電子分佈性質,也成功應用於Heck-Mizoroki和Suzuki-Miyaura交錯偶合反應,並且得到良好之效果。
另外我們也針對其鈀金屬錯化物9進行可見光光致化氧化還原醯胺生成反應,並利用合理的推斷其反應機制,經由UV-Visible光譜得知其吸收為499 nm,而於藍光及綠光下可得到目標產物,氮於紅光下則無反應。
另外也成功應用於一鍋化(One-pot)C/C、C/N鍵生成反應、可見光光致碳氫鍵活化反應,並且得到良好之效果,和過去相似之光催化反應需使用雙金屬之配合,而在此我們的鈀金屬催化劑具有雙功能 (Bifunctional) 性質之”Janus catalyst”,同時能夠進行單電子及雙電子催化反應之機制。
zh_TW
dc.description.abstractThe simple synthetic development of acyclic pincer bis(pyridine)carbodicarbene is depicted herein. Presented is the first isolated structural pincer carbodicarbene with a C-C-C angle of 143°, larger than the monodentate framework. More importantly theoretical analysis revealed that this carbodicarbene embodies a more allene-like character. Pd complexes supported by this pincer ligand are active catalysts for Heck-Mizoroki and Suzuki-Miyaura coupling reactions.
The combination of conventional transition metal-catalyzed coupling reactions and photoredox catalysis has emerged as a powerful approach to catalyze difficult cross-coupling reactions under mild conditions (e.g. alkyl-olefin C-C and C-O bond formations). In these reactions, two distinct organometallic catalysts are necessary for promoting the catalytic photoredox and coupling sequences. Herein, we report a unique Pd complex that mediates both photoredox catalysis for C-N bond formation upon visible-light irradiation and conventional Suzuki-Miyaura coupling in the absence of light. These two catalytic pathways can be merged to promote both conventional transition-metal-catalyzed coupling and photoredox catalysis to mediate C-H arylation under ambient conditions with a single component catalyst in an efficient one-pot process. We demonstrate the potential of applying visible light to turn on a different type of cross-coupling reaction (through the excited-state scheme) in addition to the inherent ground-state catalysis using a single metal complex.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:37:55Z (GMT). No. of bitstreams: 1
ntu-107-D02223106-1.pdf: 10243382 bytes, checksum: cb4304ad9d3f2c5c16f2bdb21f5f1a9d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要--------------------------------------------II
英文摘要-------------------------------------------III
目錄-----------------------------------------------IV
圖目錄----------------------------------------------VI
表目錄---------------------------------------------VIII
第1章 緒論----------------------------------------1
1-1 前言-----------------------------------1
1-2 何謂碳烯-----------------------------2
1-3 五環含氮鍵結氮異環碳烯(NHC)-------------------------3
1-4 連烯烃化合物----------------------5
1-4-1 直線型連烯烴化合物--------------------------------5
1-4-2 對稱彎曲型連烯烴化合物-------------------------------6
1-4-3 不對稱彎曲型連烯烴化合物及其結構-----------------------10
1-4-4 三牙基同碳雙碳烯 (Tridentate CDC) 及其過度金屬錯化物------12
1-5有機金屬錯化物之光催化反應---------------------------13
第2章 實驗目的與動機-------------------------16
第3章 實驗結果與討論--------------------------17
3-1雙吡啶同碳雙碳烯(CDC)之製備及其結構探討----------------17
3-2三牙基同碳雙碳烯鈀金屬錯化物合成及探討-----------------------21
3-3三牙基同碳雙碳烯鈀金屬錯化物之應用--------------------------29
3-3-1 鈀金屬錯化物6 : Suzuki和Mizoroki-Heck交錯偶合反應-------29
3-3-2 三牙基同碳雙碳烯鈀金屬光致氧化還原反應:醯胺碳氮生成-------36
3-3-3 光致氧化還原醯胺碳氮鑑生成:反應機制探討----------------------44
3-3-4 鈀金屬錯化物9一鍋化連續反應----------------------------50
3-3-5 鈀金屬錯化物9光觸發碳氫鍵官能基化反應----------------------53
第4章 結論-----------------------------------------57
第5章 實驗步驟及概述-------------------------59
5-1實驗儀器分析及藥品---------------------------------------59
5-2雙吡啶同碳雙碳烯 (CDC)及鈀金屬錯化物合成--------------------61
5-3 Mirozoki-Heck及Suzuki交錯偶合反應-----------------------69
5-4光致氧化還原碳氮醯胺鍵生成反應-----------------------------71
5-5光致氧化還原碳氮醯胺鍵生成反應:反應機制實驗及其計算實驗---------85
5-6一鍋化(One-pot)反應: C/C、C/N鍵生成-----------------------90
5-7光觸發碳氫鍵官能基化反應-----------------------------------95
第6章 文獻引用----------------------------------106
第7章 實驗基本數據----------------------------109
7-1晶體數據-----------------------------------109
7-2 NMR光譜-------------------------------------117








圖目錄
圖1.1 碳烯電子型態------------------------------------------------------------------------------------------1
圖1.1 碳烯電子型態------------------------------------------------------------------------------------------2
圖1.2 碳烯能接圖---------------------------------------------------------------------------------------------2
圖1.3 常見碳烯結構------------------------------------------------------------------------------------------3
圖1.4 Öfele鉻金屬及Wanzlick汞金屬與碳烯之錯化物---------------------------------------------4
圖1.5 丙二烯一般通式及側面圖---------------------------------------------------------------------------5
圖1.6 Cumulene一般結構-----------------------------------------------------------------------------------6
圖1.7 環狀之連烯烴------------------------------------------------------------------------------------------6
圖1.8 同碳雙碳烯之共振------------------------------------------------------------------------------------7
圖1.9 同碳雙碳烯之芳香性推拉共振效應---------------------------------------------------------------7
圖1.10 Bertrand及Fürstner之同碳雙碳烯---------------------------------------------------------------7
圖1.11 異丙基取代及環己基取代之同碳雙碳烯---------------------------------------------------------8
圖1.12 三配位雙陽離子氫化硼錯合物及其計算分析---------------------------------------------------9
圖1.13 不對稱同碳雙碳烯-----------------------------------------------------------------------------------10
圖1.14 釕金屬多吡啶配位錯化物--------------------------------------------------------------------------13
圖1.15 氧化淬息機制和還原淬息機制--------------------------------------------------------------------14
圖1.16 雙金屬還原淬息機制光催化-----------------------------------------------------------------------15
圖1.17 光催化機制--------------------------------------------------------------------------------------------15
圖3.1 4之分子 X-ray 結構--------------------------------------------------------------------------------15
圖3.2 分子5及異丙基取代之同碳雙碳烯單經結構--------------------------------------------------15
圖3.3 6 之分子 X-ray 結構-------------------------------------------------------------------------------21
圖3.4 單配位同碳雙碳烯鈀金屬錯化物-----------------------------------------------------------------22
圖3.5 鈀金屬錯化物6 HOMO to HOMO-3--------------------------------------------------------------24
圖3.6 計算模擬5和 5'之HOMO及HOMO-1---------------------------------------------------------25
圖3.7 5和5'之Electron localization function (ELF)分析----------------------------------------------26
圖3.8 Natural charge population分析---------------------------------------------------------------------26
圖3.9 9之X-ray 結構---------------------------------------------------------------------------------------28
圖3.10 三牙基同碳雙碳烯金屬圖--------------------------------------------------------------------------35
圖3.11 傳統醯胺合成策略-----------------------------------------------------------------------------------36
圖3.12 催化劑9 UV-Vis/emission光譜-------------------------------------------------------------------41
圖3.13 藍光,綠光,紅光反應比較圖-----------------------------------------------------------------------41
圖3.14 催化劑9之物理化學基本性質---------------------------------------------------------------------44
圖3.15 氧氣及吡咯烷之CV圖------------------------------------------------------------------------------45
圖3.16 催化劑9激發態及氧化還原電位比較圖---------------------------------------------------------46
圖3.17 催化劑9之光致化氧化還原機制------------------------------------------------------------------46
圖3.18 過氧化氫之測試--------------------------------------------------------------------------------------47
圖3.19 催化劑9之氧氣反應核磁圖譜---------------------------------------------------------------------48
圖3.20 亞胺3,4-dihydroisoquinoline核磁光譜鑑定圖-------------------------------------------------49
圖3.21 單一金屬光催化機制示意圖-----------------------------------------------------------------------50
圖3.22 Sandford之光觸發碳氫鍵活化研究-------------------------------------------------------------53
圖3.23 單一金屬光催化機制示意圖-----------------------------------------------------------------------53
圖3.24 光致化碳氫鍵活化反應機制推測-----------------------------------------------------------------55
圖4.1 光催化機制比較圖-----------------------------------------------------------------------------------58
圖5.1 過氧化氫試紙測式圖--------------------------------------------------------------------------------86
圖5.2 3,4-dihydroisoquinoline及過氧化氫試紙測式圖-----------------------------------------------87
圖5.3 催化劑9氧氣罩光核磁普圖-----------------------------------------------------------------------88






表目錄
表3.1 5及6實際單晶結構以及理論計算之比較-------------------------------------------------------24
表3.2 Mizoroki-Heck反應之產率優化------------------------------------------------------------------29
表3.3 Mizoroki-Heck交錯偶合反應之衍生------------------------------------------------------------30
表3.4 丙烯酸丁酯(butyl acrylate)進行Mizoroki-Heck反應之衍生---------------------------------31
表3.5 Suzuki-Miyaura交錯偶合反應--------------------------------------------------------------------32
表3.6 Suzuki-Miyaura交錯偶合反應2-------------------------------------------------------------------33
表3.7 9之Suzuki-Miyaura交錯偶合反應---------------------------------------------------------------34
表3.8 2006年醯類化合物類別百分比-------------------------------------------------------------------36
表3.9 光致氧化還原反應產率優化表--------------------------------------------------------------------39
表3.10 光致氧化還原反應變因實驗-----------------------------------------------------------------------40
表3.11 光致氧化還原反應之衍生--------------------------------------------------------------------------42
表3.12 光致氧化還原反應之衍生2------------------------------------------------------------------------43
表3.13 光觸發碳氫鍵官能基化產率優化-----------------------------------------------------------------54
表3.14 光觸發碳氫鍵官能基化反應衍生-----------------------------------------------------------------56
dc.language.isozh-TW
dc.subject光催化zh_TW
dc.subject同碳雙碳烯zh_TW
dc.subject碳烯zh_TW
dc.subject鈀金屬zh_TW
dc.subjectcarbeneen
dc.subjectphotocatalysisen
dc.subjectpalladiumen
dc.subjectcarbodicarbeneen
dc.title雙吡啶三牙彎曲型同碳雙碳烯及鈀金屬錯化物之結構探討及其催化應用zh_TW
dc.titleIsolation of Tridentate Acyclic Bis(Pyridine)carbodicarbene and Palladium Complex Further Studies on Its Structural Implications and Applicationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor王朝諺
dc.contributor.oralexamcommittee蔡蘊明,蔡福裕,邱靜雯
dc.subject.keyword碳烯,同碳雙碳烯,鈀金屬,光催化,zh_TW
dc.subject.keywordcarbene,carbodicarbene,palladium,photocatalysis,en
dc.relation.page170
dc.identifier.doi10.6342/NTU201803324
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
10 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved