請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72363完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單偉彌(Vianney Denis) | |
| dc.contributor.author | Yu-Ting Lin | en |
| dc.contributor.author | 林玉婷 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:37:48Z | - |
| dc.date.available | 2019-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | Alvarez-Filip L, Paddack MJ, Collen B, Robertson DR, Côté IM (2015) Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation. PLoS One 10:e0126004
Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical south west Atlantic. PLoS One 7:5–10 Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693 Anderson MJM (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46 Baker EK, Puglise KA, Harris PT (2016) Mesophotic Coral Ecosystems – A Lifeboat for Coral Reefs? United Nations Environment Programme and GRID-Arendal Bell J, Smith D (2004) Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-eastern Sulawesi, Indonesia: richness and abundance. J Mar Biol Ass UK 84:581–591 Bell JJ, Barnes DKA (2001) Sponge morphological diversity: a qualitative predictor of species diversity? Aquat Conser Mar Freshw Ecosyst 11:109–121 Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833 Benayahu Y, Loya Y (1981) Competition for space among coral-reef sessile organisms ar Eilat, Red sea. Bull Mar Sci 31:514–522 Biondini ME, Mielke PW, Berry KJ (1988) Data-dependent permutation techniques for the analysis of ecological data. Plant Ecol 75:161–168 Birrell CL, McCook LJ, Willis BL (2005) Effects of algal turfs and sediment on coral settlement. Mar Pollut Bull 51:408–414 Bo M, Bertolino M, Borghini M, Castellano M, Harriague AC, Di Camillo CG, Gasparini GP, Misic C, Povero P, Pusceddu A, Schroeder K, Bavestrello G (2011) Characteristics of the mesophotic megabenthic assemblages of the Vercelli seamount (North Tyrrhenian Sea). PLoS One 6:e16357 Boury-Esnault N, Rützler K (1997) Thesaurus of sponge morphology. Smithson Contrib to Zool 596:1–55 Bozec YM, Alvarez-Filip L, Mumby PJ (2015) The dynamics of architectural complexity on coral reefs under climate change. Glob Chang Biol 21:223–235 Braun-Blanquet J (1932) Plant sociology. The study of plant communities. McGraw-Hill Book Co., Inc., New York and London Briggs JC (2005) Coral reefs: Conserving the evolutionary sources. Biol Conserv 126:297–305 Brooker RM, Munday PL, Mcleod IM, Jones GP (2013) Habitat preferences of a corallivorous reef fish: predation risk versus food quality. Coral Reefs 32:613–622 Cassata L, Collins LB (2008) Coral reef communities, habitats, and substrates in and near sanctuary zones of Ningaloo Marine Park. J Coast Res 241:139–151 Chanmethakul T, Chansang H, Watanasit S (2010) Soft coral (Cnidaria: Alcyonacea) distribution patterns in Thai waters. Zool Stud 49:72–84 Cheal AJ, MacNeil MA, Cripps E, Emslie MJ, Jonker M, Schaffelke B, Sweatman H (2010) Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29:1005–1015 Chen CA (1999) Analysis of scleractinian distribution in Taiwan indicating a pattern congruent with sea surface temperatures and currents: examples from Acropora and Faviidae corals. Zool Stud 38:119–129 Chen CA, Dai CF (2004) Local phase shift from Acropora-dominant to Condylactis-dominant community in the Tiao-Shi Reef, Kenting National Park, southern Taiwan. Coral Reefs 23:508 Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461–488 Cresswell AK, Edgar GJ, Stuart-Smith RD, Thomson RJ, Barrett NS, Johnson CR (2017) Translating local benthic community structure to national biogenic reef habitat types. Glob Ecol Biogeogr 26:1112–1125 Dai CF, Horng S (2009a) Scleractinia Fauna of Taiwan I . The Complex Group. Institute of Oceanography, National Taiwan University, Taipei Dai CF, Horng S (2009b) Scleractinia Fauna of Taiwan. II. The Robust Group. Institute of Oceanography, National Taiwan University, Taipei Dai CF, Horng S (2009c) A guild of the corals in Taiwan (in Chinese). Owls, Taipei Dai CF, Stewart LL, Cooper RA, Sprunk HJ (1992) Distribution of substrates and macrobenthos at depths between 35 and 120 m in Southern Taiwan. Acta Oceanogr Taiwanica 28:1–18 Dai CF, Chen YZ, Kuo KM, Chung CH, Tsai ML, Wang SW, Shiao CE (1998) Studies on the changes of coral communities in Kenting National Park (in Chinese). Res Rep Taiwan Minist Inter 84 Dai CF, Kao KM, Chen YT, Chaun ST (1999) Changes of coral communities in the eastern and western coast, Kenting National Park from 1987 to 1997 (in Chinese). Bull Natl Park 9:111–129 Dai CF (1991) Distribution and adaptive strategies of alcyonacean corals in Nanwan Bay, Taiwan. Hydrobiologia 216–217:241–246 Dai CF (1993) Patterns of coral distribution and benthic space partitioning on the fringing reefs of southern Taiwan. Mar Ecol 14:185–204 Dai CF (2014) Marine biodiversity (in Chinese). In: Xiang J, Wu YL (eds) Regional Oceanography of Taiwan. National Taiwan University, Taipei, pp 377–421 Dai CF, Huang MS, Cheng AE (2010b) Marine ecological guild of Yan Liao Bay (in Chinese). Taiwanese coral reef society, Taipei Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386 De’ath G, Fabricius K (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl 20:840–850 Dean RL, Connell JH (1987) Marine invertebrates in an algal succession. III. Mechanisms linking habitat complexity with diversity. J Exp Mar Bio Ecol 109:249–273 Denis V, Lin YTV, Ho MJ (2017a) A new association between goblet worms (Entoprocta) and xeniid corals (Cnidaria). Mar Biodivers 1–7 Denis V, DePalmas S, Benzoni F, Chen CA (2015) Extension of the known distribution and depth range of the scleractinian coral Psammocora stellata: first record from a Taiwanese mesophotic reef.Mar Biodivers 45:619–620 Denis V, Ribas-Deulofeu L, Sturaro N, Kuo CY, Chen CA (2017b) A functional approach to the structural complexity of coral assemblages based on colony morphological features. Sci Rep 7:1–11 Denis V, Soto D, DePalmas S, Lin YTV, Benayahu Y, Huang YM, Liu SL, Chen JW, Chen Q, Sturaro N, Ho MJ, Su Y, Dai CF, Chen CA (In Press) Mesophotic coral ecosystems in Taiwan. In: Loya Y, Puglise KA, Bridg eT (eds) Mesophotic coral ecosystems of the world. Springer International Publishing AG, Diaz-Pulido G, McCook LJ (2004) Effects of live coral, epilithic algal communities and substrate type on algal recruitment.Coral Reefs 23:225–233 Ding C, He X (2004) K-means clustering via principal component analysis. Proc twenty-first Int Conf Mach Learn Dolnicar S, Grabler K, Mazanec JA (1998) A tale of three cities: perceptual charting for analyzing destination images. In: Woodside A (eds) Consumer psychology of tourism, hospitality and leisure. CAB International, New York, pp 39–62 Done TJ (1982) Patterns in the distribution of coral communities across the central Great Barrier Reef. Coral Reefs 1:95–107 Dufrêne M, Legendre P (1997) Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol Monogr 67:345–366 Fabricius K, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, Queensland Foster MS, Amado Filho GM, Kamenos NA, Riosmena-Rodriguez R, Steller DL (2013) Rhodoliths and rhodolith beds. Smithson Contrib Mar Sci 39:143–155 Fricke H, Meischner D (1985) Depth limits of Bermudan scleractinian corals: a submersible survey. Mar Biol 88:175–187 Fung T, Seymour RM, Johnson CR (2011) Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92:967–982 Gori A, Rossi S, Berganzo E, Pretus JL, Dale MRT, Gili JM (2011) Spatial distribution patterns of the gorgonians Eunicella singularis, Paramuricea clavata, and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar Biol 158:143–158 Graham NAJ, Bellwood DR, Cinner JE, Hughes TP, Norström AV, Nyström M (2013) Managing resilience to reverse phase shifts in coral reefs. Front Ecol Environ 11:541–548 Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326 Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci 103:8425–8429 Guillemot N, Chabanet P, LePape O (2010) Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs 29:445–453 Harriott VJ, Smith SDA, Harrison PL (1994) Patterns of Coral Community Structure of Subtropical Reefs in the Solitary-Islands Marine Reserve, Eastern Australia. Mar Ecol Prog Ser 109:67–76 Hoang BX, Sawall Y, Al-Sofyani A, Wahl M (2015) Chemical versus structural defense against fish predation in two dominant soft coral species (Xeniidae) in the Red Sea. Aquat Biol 23:129–137 van den Hoek C, Breeman AM, Bak RPM, van Buurt G (1978) Distribution of algae, corals and gorgonians in relation to depth, light attenuation, water-movement and grazing pressure in fringing coral reef of Curacao, Netherlands Antilles. Aquat Bot 5:1–46 van den Hoek C, Cortel-Breeman AM, Wanders JBW (1975) Algal zonation in the fringing coral reef of curaçao, Netherlands antilles, in relation to zonation of corals and gorgonians. Aquat Bot 1:269–308 Huang SF (2000) Seaweeds of Northeastern Taiwan.National Taiwan Museum, Taipei Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551 Hughes TP, Barne sML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, VanNes EH, Scheffer M (2017a) Coral reefs in the Anthropocene. Nature 546:82–90 Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642 Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JPA, Hoogenboom MO, Kennedy EV., Kuo CY, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017b) Global warming and recurrent mass bleaching of corals. Nature 543:373–377 Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365 Huston MA (1985) Patterns of species diversity on coral reefs. Ann Rev Ecol Syst 16:149–177 Jänes H, Kotta J, Pärnoja M, Crowe TP, Rindi F, Orav-Kotta H (2017) Functional traits of marine macrophytes predict primary production. Funct Ecol 31:975–986 Jax K (2006) Ecological units: definitions and application. Q Rev Biol 81:237–258 Jeng MS, Huang HD, Dai CF, Hsiao YC, Benayahu Y (2011) Sclerite calcification and reef-building in the fleshy octocoral genus Sinularia (Octocorallia: Alcyonacea). Coral Reefs 30:925–933 Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275 Kleypas JA, McMamus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159 Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269 Konishi K (1982) Alcyonarian spiculite: limestone of soft corals. Proceeding 4th Int Coral Reef Symp 643–649 Kuo CY, Meng PJ, Ho PH, Wang JT, Chen JP, Chiu YW, Lin HJ, Chang YC, Fan TY, Chen CA (2011) Damage to the reefs of Siangjiao Bay marine protected area of Kenting National Park, southern Taiwan during typhoon Morakot. Zool Stud 50:85 Kuo CY, Yuen YS, Meng PJ, Ho PH, Wang JT, Liu PJ, Chang YC, Dai CF, Fan TY, Lin HJ, Baird AH, Chen CA (2012) Recurrent Disturbances and the Degradation of Hard Coral Communities in Taiwan. PLoS One 7:e44364 Laverick JH, Andradi-Brown DA, Rogers AD (2017) Using light-dependent scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras. PLoS One 12:1–18 Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280 Lesser MP, Slattery M (2011) Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol Invasions 13:1855–1868 Littler MM, Littler DS, Hanisak MD (1991) Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J Exp Mar Bio Ecol 150:163–182 Liu PJ, Meng PJ, Liu LL, Wang JT, Leu MY (2012) Impacts of human activities on coral reef ecosystems of southern Taiwan: a long-term study. Mar Pollut Bull 64:1129–1135 Liu PJ, Shao KT, Jan RQ, Fan TY, Wong SL, Hwang JS, Chen JP, Chen CC, Lin HJ (2009) A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Mar Environ Res 68:106–117 Luckhurst BE, Luckhurst K (1978) Analysis of the influence of substrate variables on coral reef fish communities. Mar Biol 49:317–323 Macqueen J (1967) Some methods for classification and analysis of multivariate observations. Proc Fifth Berkeley Symp Math Stat Probab 1:281–297 Maldonado M, Aguilar R, Bannister RJ, Bell JJ, Conway KW, Dayton PK, Díaz C, Gutt J, Kelly M, Kenchington ELR, Leys SP, Pomponi SA, Rapp HT, Rutzler K, Tendal OS, Vacelet J, Young CM (2017) Sponge grounds as key marine habitats: a synthetic review of types, structure, functional roles, and conservation concerns. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine Animal Forests. pp 145–184 Maliao RJ, Turingan RG, Lin J (2008) Phase-shift in coral reef communities in the Florida Keys National Marine Sanctuary (FKNMS), USA. Mar Biol 154:841–853 Meng PJ, Lee H, Wang J, Chen C, Lin H, Tew K, Hsieh W (2008) A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environ Pollut 156:67–75 Meng P, Chen C, Chen C, Chiu Y, He C, Lin S, Cheng Y, Liu P (2010) The long term coral reef ecological monitoring plan in the water of Kenting National Park (in Chinese). Rep Comm by Kenting Natl Park Headquarter Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50:159–179 Minchin P (1985) Theory and models in vegetation science. Proc Symp Uppsala 89-107 Mok HK (2008) Ecological environment in the area along the Kuroshio in Taiwan.Kuroshio Sci 2:21–27 Morrissey J (1980) Community structure and zonation of microalgae and hermatypic corals on a fringing reef flat of magnetic island (Queensland, Australia). Aquat Bot 8:91–139 Moyer RP, Riegl B, Banks K, Dodge RE (2003) Spatial patterns and ecology of benthic communities on a high-latitude South Florida (Broward County, USA) reef system. Coral Reefs 22:447–464 Mumby PJ (2017) Embracing a world of subtlety and nuance on coral reefs. Coral Reefs 36:1003–1011 Nagelkerken I, Vermonden K, Moraes OCC, Debrot AO, Nagelkerken WP (2005) Changes in coral reef communities and an associated reef fish species, Cephalopholis cruentata (Lacépède), after 30 years on Curaçao (Netherlands Antilles). Hydrobiologia 549:145–154 Norström AV, Nyström M, Lokrantz J, Folke C (2009) Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar Ecol Prog Ser 376:295–306 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H, Oksanen MJ (2009) Vegan: community ecology package. R package version 2.4-5, Palacios MM, Zapata FA (2014) Fish community structure on coral habitats with contrasting architecture in the Tropical Eastern Pacific. Rev Biol Trop 62:343–357 Perry CT (2003) Coral reefs in a high-latitude, siliciclastic barrier island setting: Reef framework and sediment production at Inhaca Island, southern Mozambique. Coral Reefs 22:485–497 Perry CT, Larcombe P (2003) Marginal and non-reef-building coral environments. Coral Reefs 22:427–432 R Core Team (2017) R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Reed JK, Farrington S, Moe H, Harter S, Hanisak D, David A (2014) Characterization of the mesophotic benthic habitat and fish assemblages from ROV dives on Pulley Ridge and Tortugas during 2014 R/V Walton Smith Cruise. NOAA Cooperative Institute of Ocean Exploration, Research and Technolo, Florida Ribas-Deulofeu L, Denis V, DePalmas S, Kuo CY, Hsieh HJ, Chen CA (2016) Structure of benthic communities along the Taiwan latitudinal gradient. PLoS One 11:e0160601 Riegl B, Schleyer MH, Cook PJ (1995) Structure of Africa’s southermost coral communities. Bull Mar Sci 56:676–691 Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (2002) Modern Applied Statistics with S. R package version 2.4-5 Risk MJ (1972) Fish diversity on a coral reef in the Virgin islands. Atoll Res Bull 153:1–6 Roberts DW (2016) Labdsv: Ordination and Multivariate Analysis for Ecology. R package version 2.4-5 Rossi S, Bramanti L, Gori A, Orejas C (2017a) Marine Animal Forests - The Ecology of Benthic Biodiversity Hotspots. Springer International Publishing, Cham Rossi S, Bramanti L, Gori A, Orejas C (2017b) Animal forests of the world: an overview. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine Animal Forests. Springer International Publishing, Cham, pp 1–28 Sánchez JA (2017) Diversity and evolution of octocoral animal forests of both sides of tropical America. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine Animal Forests. Springer International Publishing, Cham, pp 111–144 Schleyer MH, Benayahu Y (2008) Soft coral biodiversity and distribution in East Africa: gradients, function and significance. Proc 1th Int Coral Reef Symp 1388–1391 Schleyer MH, Celliers L (2003) Coral dominance at the reef-sediment interface in marginal coral communities at Sodwana Bay, South Africa. Mar Freshw Res 54:967–972 Schubert N, Brown D, Rossi S (2017) Symbiotic versus non-symbiotic octocorals: physiological and ecological implications. In: Rossi S, Bramanti L , Gori A , Orejas C (eds) Marine Animal Forests. Springer International Publishing, Cham, pp 1–32 Sheppard CRC (1980) Coral cover, zonation and diversity on reef slopes of Chagos atolls, and population structures of the major species. Mar Ecol Prog Ser 2:193–205 Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res Ocean 112:1–14 Slattery M, Lesser MP (2012) Mesophotic coral reefs: a global model of community structure and function. Proc 12th Int Coral Reef Symp 9–13 Spalding HL (2012) Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the main Hawaiian Islands (Doctoral dissertation). University of HawaiiI at Manoa Spalding M, Burke L, Wood SA, Ashpole J, Hutchison J,Ermgassen P (2017) Mapping the global value and distribution of coral reef tourism. Mar Policy 82:104–113 Spalding MD, Fox HE, Allen GR, Davidson N, Ferdana ZA, Finlason M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Rbertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583 Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal-dominated communities. Oikos 69:476–498 Syu MR, Lee PH, Leou TM, Shen Y (2016) Solar irradiance and pan evaporation estimation from meteorological satellite data. Terr Atmos Ocean Sci 27:221–239 Szmant AM (2002) Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25:743–766 Tschudy R (1934) Depth studies on photosynthesis of the red algae. Am J Bot 21:546–556 Veron JEN (2000) Corals of the world. Townsville MC, Qld, Australian Institute of Marine Science, Australia Veron JEN, Minchin PR (1992) Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan. Cont Shelf Res 12:835–857 Wild C, Naumann MS (2013) Effect of active water movement on energy and nutrient acquisition in coral reef-associated benthic organisms. Proc Natl Acad Sci 110:8767–8768 Work TM, Aeby GS, Maragos JE (2008) Phase shift from a coral to a corallimorph-dominated reef associated with a shipwreck on Palmyra atoll. PLoS One 3:1–5 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72363 | - |
| dc.description.abstract | 在現今氣候變遷以及人類引起的壓力下,珊瑚礁正面臨全面的崩潰。珊瑚礁中事實上存在許多有別於我們一般認為未受干擾的面相(如:很高的珊瑚覆蓋率及豐度),但這些不同的相往往被認為是未受干擾的相經過擾動之後的單一向反應結果。再者,為了符合當代對於科學普及的需求,人們傾向使用這種用單一向反應結果的概念來解釋整個珊瑚礁生態對於擾動前後的反應。然而,這個概念卻忽略了過往辨識不同珊瑚礁相的研究,而這些不同的珊瑚礁相或許對於擾動有不同的反應以及扮演著不同的角色。臺灣周圍對比的海洋環境造就了絕佳的研究背景,可以用來調查珊瑚礁相關的底棲生態群聚(ECs)的數量、特徵以及分布。本研究使用了89條穿越線以及主要分類群下的形態功能性分類來調查在不同區域(北區、東區和南區)和不同深度(10米和40米)的台灣底棲類聚。在這89條穿越線中,ECs的最佳分群數量由非監督式學習的運算(k-means clustering)所決定。ECs的特徵藉由其不同的指標性物種及種組成來描述,並且調查ECs在臺灣的分布。另外,也測試了區域和深度因子是否能顯著的區別底棲類聚。研究結果顯示七個獨特且統計上支持的ECs。ECs的分布狀況意味著雖然全球溫度及光度可能和ECs的大方向分布有關,但最終地方性的環境因子可能也會影響ECs在當地的分布。為了達成保育的目地,只有考量每個深度及區域才可以了解每個EC的代表性。總體來說,為了對於珊瑚礁在快速變動的環境下的反應有更完整的認知,我們需要更加的了解珊瑚礁區各種不同的相以及其生態動態。 | zh_TW |
| dc.description.abstract | Nowadays, coral reefs are recognized in imminent collapse because of the increasing pressure of climatic and human stressors. The existence of multiple ecological facets departing from a ‘pristine’ view of the coral reefs (i.e. high coral cover and richness) is usually interpreted as a monotonic response to disturbances. A generalization of ‘one-size-fits-all’ ecological concepts probably answers to a contemporary need of simplifying and broadcasting coral reefs’ responses to changes. However, it has disregarded past qualitative studies recognizing the existence of several facets of reefs possibly associated to different ecological responses and roles. The contrasted environmental conditions around Taiwan constitute an ideal setting to investigate quantitatively the numbers, characteristics and distribution of reef-related ecological communities (ECs). Benthic assemblages were characterized along regions (North, East, South) / depths (-10 and -40 m) using 89 photo-transects and a morpho-functional categorization of the major taxa. The optimal number of ecological communities (ECs) were identified among transects using an unsupervised learning algorithm (k-means clustering). Their characteristics were outlined by identifying indicators groups, their composition assessed, and their distribution in Taiwan examined. The relevance of regional and bathymetric factors in discriminating benthic assemblages (possibly confounding different ECs) were further tested. Seven unique and well-supported ECs were identified. Their distribution suggests that while global temperature and light regimes may be associated to a panel of ECs available, local factors may have the final say on the EC thriving at a given location. In an objective of conservation, the integration of each depth and region only could achieve a representativeness of each of these ECs. Overall, a better consideration of these facets of reefs and their dynamics will be critical for a comprehensive understanding of current response of coral reefs to changes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:37:48Z (GMT). No. of bitstreams: 1 ntu-107-R05241212-1.pdf: 1607253 bytes, checksum: d98f07f1d3aa102703e35659631b9d59 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書-ii
致謝-iii Abstract-iv 摘要-vi Contents-vii Introduction-1 Materials and methods-6 Study sites-6 Initial benthic diversity assessment and ecological surveys-6 Data analysis-8 Results-11 Discussion-15 References-21 Figure Contents-34 Table Contents-40 Supplementary Information-46 | |
| dc.language.iso | en | |
| dc.subject | 生態群聚 | zh_TW |
| dc.subject | 底棲群聚 | zh_TW |
| dc.subject | 功能性方法 | zh_TW |
| dc.subject | 型態 | zh_TW |
| dc.subject | 功能性角色 | zh_TW |
| dc.subject | Functional role | en |
| dc.subject | Benthic community | en |
| dc.subject | Functional approach | en |
| dc.subject | Morphology | en |
| dc.subject | Ecological community | en |
| dc.title | 台灣珊瑚礁相關生態群聚的特性及分布 | zh_TW |
| dc.title | Characterization and distribution of reef-related
ecological communities in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴昌鳳(Chang-Feng Dai),野澤洋耕(Nozawa Yoko) | |
| dc.subject.keyword | 生態群聚,底棲群聚,功能性方法,型態,功能性角色, | zh_TW |
| dc.subject.keyword | Ecological community,Benthic community,Functional approach,Morphology,Functional role, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201803598 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
