請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72358完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王玉麟(Yuh-Lin Wang) | |
| dc.contributor.author | Wen-Yu Huang | en |
| dc.contributor.author | 黃文昱 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:37:29Z | - |
| dc.date.available | 2018-08-20 | |
| dc.date.copyright | 2018-08-20 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | Chapter 1
1. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995). 2. P. E. Shaw, A. Ruseckas, and I. D. Samuel, Advanced materials 20, 3516 (2008). 3. F. K. Bernhard Knoll, Optics Communications 182, 321 (2000). 4. H. Heinzelmann and D. Pohl, Applied Physics A 59, 89 (1994). 5. A. Bek, R. Vogelgesang, and K. Kern, Review of Scientific Instruments 77, 043703 (2006). Chapter 2 1. Ohl, R.S., Light-sensitive electric device. 1946, Google Patents. 2. J. Gong, S. B. Darling, and F. You, Energy & Environmental Science 8, 1953 (2015). 3. C. W. Tang, Applied Physics Letters 48, 183 (1986). 4. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou, Journal of the American Chemical Society 139, 7148 (2017). 5. L. Brambilla, C. Capel Ferron, M. Tommasini, K. Hong, J. T. Lopez Navarrete, V. Hernandez, and G. Zerbi, Journal of Raman Spectroscopy (2017). 6. M. C. Gurau, D. M. Delongchamp, B. M. Vogel, E. K. Lin, D. A. Fischer, S. Sambasivan, and L. J. Richter, Langmuir 23, 834 (2007). 7. R. C. Nieuwendaal, C. R. Snyder, and D. M. DeLongchamp, ACS Macro Letters 3, 130 (2014). 8. S. Ludwigs, P3HT Revisited from molecular scale to solar cell devices, Advances in Polymer Science (2014). 9. H. Yang, S. W. LeFevre, C. Y. Ryu, and Z. Bao, Applied Physics Letters 90, 172116 (2007). 10. J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch, and H. Sirringhaus, Chemistry of Materials 16, 4772 (2004). 11. D. M. DeLongchamp et al., Chemistry of materials 17, 5610 (2005). 12. E. J. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, and S. Ludwigs, Advanced materials 24, 839 (2012). 13. B. Dorling, A. Sanchez?Diaz, O. Arteaga, A. Veciana, M. I. Alonso, and M. Campoy?Quiles, Advanced Optical Materials 5, 1700276 (2017). Chapter 3 1. E. Synge, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 6, 356 (1928). 2. E. Ash and G. Nicholls, Nature 237, 510 (1972). 3. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Physical review letters 49, 57 (1982). 4. D. W. Pohl, W. Denk, and M. Lanz, Applied physics letters 44, 651 (1984). 5. E. Betzig and J. K. Trautman, Science 257, 189 (1992). 6. M. Specht, J. Pedarnig, W. Heckl, and T. Hansch, Physical Review Letters 68, 476 (1992). 7. F. K. Bernhard Knoll, Optics Communications 182, 321 (2000). 8. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, Optics express 15, 8550 (2007). 9. J.-Y. Chu and J.-K. Wang, in Advanced Photonic Sciences (InTech, 2012). 10. M. B. Raschke and C. Lienau, Applied Physics Letters 83, 5089 (2003). 11. J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, Physical Review B 71 (2005). 12. S. Schneider, S. Grafstrom, and L. Eng, Physical Review B 71, 115418 (2005). 13. I. V. Lindell, K. I. Nikoskinen, and M. J. Flykt, Radio Science 31, 1361 (1996). 14. R. Hillenbrand and F. Keilmann, Physical Review Letters 85, 3029 (2000). 15. R. W. Stark, T. Drobek, and W. M. Heckl, Applied Physics Letters 74, 3296 (1999). Chapter 4 1. M. B. Raschke and C. Lienau, Applied Physics Letters 83, 5089 (2003). 2. R. Hillenbrand and F. Keilmann, Physical Review Letters 85, 3029 (2000). Chapter 5 1. P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Physical Review B 67, 064203 (2003). 2. S. M. Falke et al., Science 344, 1001 (2014). 3. M. Campoy-Quiles, J. Nelson, D. D. Bradley, and P. G. Etchegoin, Physical Review B 76, 235206 (2007). 4. S. Engmann, V. Turkovic, G. Gobsch, and H. Hoppe, Advanced Energy Materials 1, 684 (2011). 5. V. S. Gevaerts, L. J. A. Koster, M. M. Wienk, and R. A. Janssen, ACS applied materials & interfaces 3, 3252 (2011). 6. S. Engmann, V. Turkovic, P. Denner, H. Hoppe, and G. Gobsch, Journal of Polymer Science Part B: Polymer Physics 50, 1363 (2012). 7. K. Rahimi, I. Botiz, J. O. Agumba, S. Motamen, N. Stingelin, and G. Reiter, RSC Adv. 4, 11121 (2014). 8. A. J. Morfa, T. M. Barnes, A. J. Ferguson, D. H. Levi, G. Rumbles, K. L. Rowlen, and J. van de Lagemaat, Journal of Polymer Science Part B: Polymer Physics 49, 186 (2011). 9. B. Dorling, A. Sanchez?Diaz, O. Arteaga, A. Veciana, M. I. Alonso, and M. Campoy?Quiles, Advanced Optical Materials 5, 1700276 (2017). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72358 | - |
| dc.description.abstract | 有機太陽能電池被視為潛力的次世代太陽能電池,自從異質接面的概念被引入後,有機太陽能電池的光電轉換效率大幅提升。有機太陽能電池之異質接面是藉由電子予體和電子受體高分子材料混合而產生之纖維狀結構。在高效率的異質接面太陽能電池中,其奈米微域的尺寸理論上與激子的擴散距離相近---約略為20奈米。因此欲了解有機太陽能電池有效層之奈米微域結構和其光電特性之關聯性,需要可提供至少約略10奈米空間解晰度之顯微量測技術。此研究以Heterodyne散射式近場光學顯微鏡,用633 nm的光激發研究有機太陽能電池異質接面P3HT:PCBM薄膜表面之奈米微域結構,並搭配靜電偶極子模型的計算判讀近場顯微影像。從理論模型計算得知P3HT之近場訊號相對強度大於PCBM,且有序結構之P3HT之近場訊號相對強度大於無序結構之P3HT。從近場顯微影像可得知旋轉塗佈P3HT的薄膜表面出現網狀之奈米微域結構,而P3HT:PCBM薄膜上則出現互不相連之奈米微域,除此之外,此研究發現薄膜表面之P3HT和PCBM的面積比例和旋轉塗佈前材料混合之比例有所差異,可得知P3HT奈米微域並非均勻地分佈於三維的有機太陽能電池有效層中。此論文顯示散射式近場光學顯微鏡可應用於有機太陽能電池表面之奈米微域鑑定。 | zh_TW |
| dc.description.abstract | Polymer-based organic solar cell has been seen as a potential candidate of next-generation photovoltaics. The introduction of bulk-heterojunction (BHJ) concept — a blended film of electron donor and acceptor that forms an interconnected network — is the key to greatly improve the power conversion efficiency (PCE). The domain size in the blended layer of donor and acceptor should be comparable to the exciton diffusion length (~20 nm) for best device performance. Revealing the relationship between nanostructure morphology to the electro-optical properties of organic solar cell device therefore requires a characterization tool with spatial resolution down to less 10 nanometers. In this study, nanostructure morphology of the pristine P3HT and the blended P3HT:PCBM films—a prototypical polymer-based organic solar cell was investigated by a heterodyne-based scattering-type scanning near-field optical microscopy (s-SNOM) with an excitation wavelength of 632.8 nm. The obtained s-SNOM images were interpreted with point-dipole and modified point dipole models. Theoretical prediction based on these two models show that the near-field amplitude and phase signals of P3HT are larger than that of PCBM, while these two near-field signals of ordered P3HT are larger than that of disordered P3HT. Based on these two near-field traits, the s-SNOM image of pristine P3HT displays nanometer-scaled connected network of ordered P3HT, while that of blended P3HT:PCBM shows isolated nanodomains of P3HT. Last but not least, the portrayed area ratio between P3HT and PCBM is smaller than the mixing ratio, indicating that the actual distribution of P3HT domains is not uniform over the whole active layer. This study demonstrates the capability of s-SNOM as a tool in identifying nanostructure morphology of blended P3HT:PCBM film in BHJ polymer solar cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:37:29Z (GMT). No. of bitstreams: 1 ntu-107-R03222076-1.pdf: 2898056 bytes, checksum: b926ead706b1796933e06fb394d36dc9 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Chapter 1 Introduction ...1
Chapter 2 Nanomorphology in bulk-heterojunction organic solar cells ...4 2.1 Bulk-heterojunction organic solar cells ...4 2.2 Nanodomains and exciton diffusion in BHJ organic solar cells ...6 2.3 Element sensing on P3HT:PCBM films ...7 2.4 Structural probing on P3HT:PCBM and pristine P3HT films ...7 Chapter 3 Principle of Scattering-type Scanning Near-field Optical Microscopy ...11 3.1 Background ...11 3.2 Quasi-electrostatic model of tip-sample system ...14 3.2.1 Point-dipole model ...15 3.2.2 Modified point-dipole model for anisotropic samples ...17 3.3 Heterodyne detection ...18 3.4 Extracting weak near-field traits ...19 Chapter 4 Experimental Methodology ...23 4.1 Sample preparation ...23 4.2 Scattering-type scanning near-field optical microscopy (s-SNOM) ...24 4.2.1 Setup ...24 4.2.2 Laser-induced damage consideration ...26 Chapter 5 Results and Discussion ...28 5.1 Characterization of P3HT and P3HT:PCBM films ...28 5.2 Dielectric constants of P3HT and PCBM ...29 5.3 Predicted near-field traits of pristine P3HT and P3HT:PCBM films ...31 5.4 Near-field characterization of P3HT and P3HT:PCBM films ...34 Chapter 6 Conclusions ...42 Appendix A Optical Alignment of s-SNOM ...43 Appendix B Input Parameters in the Theoretical Prediction of Near-field Signal ...45 Appendix C Reported Isotropic Dielectric Constants of P3HT and PCBM in the Literature and Corresponding Predictions of Near-field Traits ...46 Appendix D Reported Anisotropic Dielectric Constants of P3HT in the Literature and Corresponding Predictions of Near-field Traits ...47 Appendix E Data Flattening Procedure for AFM Topography, s-SNOM Signal Amplitude and Phase ...48 | |
| dc.language.iso | en | |
| dc.subject | 散射式近場光學顯微鏡 | zh_TW |
| dc.subject | P3HT:PCBM | zh_TW |
| dc.subject | 近場光學 | zh_TW |
| dc.subject | 異質接面 | zh_TW |
| dc.subject | 有機太陽能電池 | zh_TW |
| dc.subject | Bulk heterojunction | en |
| dc.subject | P3HT:PCBM | en |
| dc.subject | near-field | en |
| dc.subject | s-SNOM | en |
| dc.subject | organic solar cell | en |
| dc.title | 利用散射式近場光學顯微鏡探究有機太陽能P3HT:PCBM異質接面之奈米微域結構 | zh_TW |
| dc.title | Revealing Nanodomains of Bulk-heterojunction P3HT:PCBM Organic Solar Cell with Scattering-type Scanning Near-field Optical Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王俊凱(Juen-Kai Wang) | |
| dc.contributor.oralexamcommittee | 朱仁祐(Jen-You Chu) | |
| dc.subject.keyword | 異質接面,P3HT:PCBM,近場光學,散射式近場光學顯微鏡,有機太陽能電池, | zh_TW |
| dc.subject.keyword | Bulk heterojunction,P3HT:PCBM,near-field,s-SNOM,organic solar cell, | en |
| dc.relation.page | 48 | |
| dc.identifier.doi | 10.6342/NTU201803633 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
