Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72351
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊汶博
dc.contributor.author"Chih-Hsiang , Ou Yang"en
dc.contributor.author歐陽志翔zh_TW
dc.date.accessioned2021-06-17T06:37:03Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationArao, T., & Ae, N. (2003). Genotypic variations in cadmium levels of rice grain. Soil science and plant nutrition, 49(4), 473-479.
Arazi, T., Sunkar, R., Kaplan, B., & Fromm, H. (1999). A tobacco plasma membrane calmodulin‐binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 20(2), 171-182.
Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L., & Kizek, R. (2009). Uncommon heavy metals, metalloids and their plant toxicity: a review. Organic Farming, Pest Control and Remediation of Soil Pollutants, 275-317.
Balestrasse, K., Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2003). Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Functional plant biology, 30(1), 57-64.
Barceló, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of plant nutrition, 13(1), 1-37.
Barrow, N., & Cox, V. (1992). The effects of pH and chloride concentration on mercury sorption. II. By a soil. Journal of Soil Science, 43(2), 305-312.
Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta, 212(5-6), 696-709.
Boluda, R., Andreu, V., Gilabert, M., & Sobrino, P. (1993). Relation between reflectance of rice crop and indices of pollution by heavy metals in soils of Albufera Natural Park (Valencia, Spain). Soil technology, 6(4), 351-363.
Boussama, N., Ouariti, O., & Ghorbal, M. H. (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22(4-5), 731-752.
Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian journal of microbiology, 46(3), 237-245.
Cenkci, S., Ciğerci, İ. H., Yıldız, M., Özay, C., Bozdağ, A., & Terzi, H. (2010). Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental Botany, 67(3), 467-473.
Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS microbiology reviews, 25(3), 335-347.
Chain, E. P. o. C. i. t. F. (2014). Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal, 12(3), 3595.
Chatterjee, C., Dube, B., Sinha, P., & Srivastava, P. (2004). Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Communications in Soil Science and Plant Analysis, 35(1-2), 255-265.
Chatterjee, S., Sau, G. B., & Mukherjee, S. K. (2009). Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobiumcellulans KUCr3. World Journal of Microbiology and Biotechnology, 25(10), 1829-1836.
Chien, H.-F., & Kao, C. H. (2000). Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science, 156(1), 111-115.
Chien, H.-F., Lin, C. C., Wang, J.-W., Chen, C. T., & Kao, C. H. (2002). Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regulation, 36(1), 41-47.
Clemens, S., Antosiewicz, D. M., Ward, J. M., Schachtman, D. P., & Schroeder, J. I. (1998). The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences, 95(20), 12043-12048.
Clijsters, H. v., & Van Assche, F. (1985). Inhibition of photosynthesis by heavy metals. Photosynthesis Research, 7(1), 31-40.
Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey Iii, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229-239.
Dey, U., & Mondal, N. K. (2016). Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environmental Science, 2(1), 1196472.
Du, A., Ledin, A., Karlsson, S., & Allard, B. (1995). Adsorption of zinc on colloidal (hydr) oxides of Si, Al and Fe in the presence of a fulvic acid. Applied Geochemistry, 10(2), 197-205.
Elvidge, C. D., & Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54(1), 38-48.
Eriksson, J. (1989). The influence of pH, soil type and time on adsorbtion and uptake by plants of Cd added to the soil. Water, Air, and Soil Pollution, 48(3-4), 317-335.
Filella, I., Serrano, L., Serra, J., & Penuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 35(5), 1400-1405.
Fusconi, A., Gallo, C., & Camusso, W. (2007). Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 632(1), 9-19.
Geiken, B., Masojidek, J., Rizzuto, M., Pompili, M., & Giardi, M. (1998). Incorporation of [35S] methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant, Cell & Environment, 21(12), 1265-1273.
Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22(3), 247-252.
Gitelson, A. A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18(12), 2691-2697.
Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of plant physiology, 148(3-4), 501-508.
Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., & Groneberg, D. A. (2006). The toxicity of cadmium and resulting hazards for human health. Journal of occupational medicine and toxicology, 1(1), 22.
Godzik, B. (1993). Heavy metals content in plants from zinc dumps and reference areas. Polish Botanical Studies(05).
Gopal, R., & Rizvi, A. H. (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70(9), 1539-1544.
He, J., Ren, Y., Cheng, Z., & Jiang, D. (2008). Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice (Oryza sativa). Rice Science, 15(4), 319-325.
He, J., Zhu, C., Ren, Y., Yan, Y., & Jiang, D. (2006). Genotypic variation in grain cadmium concentration of lowland rice. Journal of Plant Nutrition and Soil Science, 169(5), 711-716.
Hernandez, L., Carpena‐Ruiz, R., & Garate, A. (1996). Alterations in the mineral nutrition of pea seedlings exposed to cadmium. Journal of Plant Nutrition, 19(12), 1581-1598.
Hirsch, R. E., Lewis, B. D., Spalding, E. P., & Sussman, M. R. (1998). A role for the AKT1 potassium channel in plant nutrition. Science, 280(5365), 918-921.
Horler, D., DOCKRAY, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273-288.
Hsu, Y. T., & Kao, C. H. (2004). Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation, 42(3), 227-238.
Huang, J., & Cunningham, S. (1996). Lead phytoextraction: species variation in lead uptake and translocation. New phytologist, 134(1), 75-84.
Huffman, E., & Allaway, W. (1973). Growth of plants in solution culture containing low levels of chromium. Plant Physiology, 52(1), 72-75.
Islam, E., Yang, X., Li, T., Liu, D., Jin, X., & Meng, F. (2007). Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of hazardous materials, 147(3), 806-816.
Jarvis, S., Jones, L., & Hopper, M. (1976). Cadmium uptake from solution by plants and its transport from roots to shoots. Plant and soil, 44(1), 179-191.
Jiang, W., & Liu, D. (2010). Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC plant biology, 10(1), 40.
Jin, M., Liu, X., & Li, T. (2011). Diagnostic models research for Cd stress of rice based on canopy multi-dimensional spectra.[J]. China Environmental Science, 1, 032.
Joshi, P. M., & Juwarkar, A. A. (2009). In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environmental science & technology, 43(15), 5884-5889.
Küpper, H., Küpper, F., & Spiller, M. (1996). Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. Journal of experimental botany, 47(2), 259-266.
Köhler, C., Merkle, T., & Neuhaus, G. (1999). Characterisation of a novel gene family of putative cyclic nucleotide‐and calmodulin‐regulated ion channels in Arabidopsis thaliana. The Plant Journal, 18(1), 97-104.
Küpper, H., Parameswaran, A., Leitenmaier, B., Trtílek, M., & Šetlík, I. (2007). Cadmium‐induced inhibition of photosynthesis and long‐term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytologist, 175(4), 655-674.
Kancheva, R., Georgiev, G., & Borisova, D. (2015). Spectral reflectance response of crop canopy to abiotic stress.
Khan, S., Farooq, R., Shahbaz, S., Khan, M. A., & Sadique, M. (2009). Health risk assessment of heavy metals for population via consumption of vegetables. World Applied Sciences Journal, 6(12), 1602-1606.
Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116(3), 368-372.
Kirkham, M. (2006). Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137(1-2), 19-32.
Kloke, A., Sauerbeck, D., & Vetter, H. (1984). The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. Changing metal cycles and human health, 113-141.
Kooistra, L., Salas, E., Clevers, J., Wehrens, R., Leuven, R., Nienhuis, P., & Buydens, L. (2004). Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environmental pollution, 127(2), 281-290.
Kosobrukhov, A., Knyazeva, I., & Mudrik, V. (2004). Plantago major plants responses to increase content of lead in soil: growth and photosynthesis. Plant Growth Regulation, 42(2), 145-151.
Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of plant physiology, 165(9), 920-931.
Krzesłowska, M., Lenartowska, M., Samardakiewicz, S., Bilski, H., & Woźny, A. (2010). Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable–a remobilization can occur. Environmental pollution, 158(1), 325-338.
Kumar, P. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental science & technology, 29(5), 1232-1238.
Lane, S., & Martin, E. (1977). A histochemical investigation of lead uptake in Raphanus sativus. New Phytologist, 79(2), 281-286.
Lee, S., & An, G. (2009). Over‐expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell & Environment, 32(4), 408-416.
Li, F.-L., Yang, C.-M., Syu, C.-H., Lee, D.-Y., Tsuang, B.-J., & Juang, K.-W. (2016). Combined effect of rice genotypes and soil characteristics on iron plaque formation related to Pb uptake by rice in paddy soils. Journal of soils and sediments, 16(1), 150-158.
Li, Z., Li, L., & Chen, G. P. J. (2005). Bioavailability of Cd in a soil–rice system in China: soil type versus genotype effects. Plant and soil, 271(1-2), 165-173.
Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation: John Wiley & Sons.
Lindblom, S., Abdel-Ghany, S., Hanson, B., Hwang, S., Terry, N., & Pilon-Smits, E. (2006). Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation. Journal of environmental quality, 35(3), 726-733.
Liu, D., Li, T. Q., Jin, X. F., Yang, X. E., Islam, E., & Mahmood, Q. (2008). Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non‐accumulating ecotypes of Sedum alfredii. Journal of integrative plant biology, 50(2), 129-140.
Luo, C., Liu, C., Wang, Y., Liu, X., Li, F., Zhang, G., & Li, X. (2011). Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. Journal of hazardous materials, 186(1), 481-490.
Malik, D., Sheoran, I., & Singh, R. (1992). Carbon metabolism in leaves of cadmium treated wheat seedlings. Plant Physiology and Biochemistry (France).
Mallick, S., Sinam, G., Mishra, R. K., & Sinha, S. (2010). Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicology and Environmental Safety, 73(5), 987-995.
Meeting, J. F. W. E. C. o. F. A., & Organization, W. H. (2010). Evaluation of Certain Food Additives: Seventy-first Report of the Joint FAO/WHO Expert Committee on Food Additives (Vol. 71): World Health Organization.
Mench, M., VANGRONSVELD, J., Lepp, N., & Edwards, R. (1998). Physicochemical aspects and efficienty of trace element immobilization by soil amendments.
Mishra, S., Srivastava, S., Tripathi, R., Kumar, R., Seth, C., & Gupta, D. (2006). Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65(6), 1027-1039.
Nakanishi, H., Ogawa, I., Ishimaru, Y., Mori, S., & Nishizawa, N. K. (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science & Plant Nutrition, 52(4), 464-469.
Panda, S., & Choudhury, S. (2005). Chromium stress in plants. Brazilian journal of plant physiology, 17(1), 95-102.
Parys, E., Romanowska, E., Siedlecka, M., & Poskuta, J. W. (1998). The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiologiae Plantarum, 20(3), 313.
Perfus‐Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32(4), 539-548.
Pietrini, F., Iannelli, M., Pasqualini, S., & Massacci, A. (2003). Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant physiology, 133(2), 829-837.
Plant, R., Munk, D., Roberts, B., Vargas, R., Rains, D., Travis, R., & Hutmacher, R. (2000). Relationships between remotely sensed reflectance data and cotton growth and yield. Transactions of the ASAE, 43(3), 535.
Price, J. C., & Bausch, W. C. (1995). Leaf area index estimation from visible and near-infrared reflectance data. Remote Sensing of Environment, 52(1), 55-65.
Qiu, B., Zeng, F., Cai, S., Wu, X., Haider, S., Wu, F., & Zhang, G. (2013). Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. Journal of plant physiology, 170(8), 772-779.
Qufei, L., & Fashui, H. (2009). Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biological trace element research, 129(1-3), 251.
Qureshi, M., Abdin, M., Qadir, S., & Iqbal, M. (2007). Lead-induced oxidative stress and metabolic alterations in Cassia angustifolia Vahl. Biologia Plantarum, 51(1), 121-128.
Rajkumar, M., Sandhya, S., Prasad, M., & Freitas, H. (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology advances, 30(6), 1562-1574.
Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant science, 180(2), 169-181.
Rodda, M., Li, G., & Reid, R. (2011). The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant and Soil, 347(1-2), 105-114.
Rodriguez, E., Santos, C., Azevedo, R., Moutinho-Pereira, J., Correia, C., & Dias, M. C. (2012). Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiology and Biochemistry, 53, 94-100.
Sandell, E. B. (1950). Colorimetric determination of traces of metals: Interscience Publishers: New York.
Santos, C., & Rodriguez, E. (2012). Review on some emerging endpoints of chromium (VI) and lead phytotoxicity Botany: InTech.
Sasaki, A., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, tpc. 112.096925.
Schlautman, M., & Morgan, J. (1994). Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: influence of solution chemistry. Geochimica et Cosmochimica Acta, 58(20), 4293-4303.
Semu, E., Singh, B., & Selmer-Olsen, A. (1987). Adsorption of mercury compounds by tropical soils II. Effect of soil: solution ratio, ionic strength, pH, and organic matter. Water, Air, and Soil Pollution, 32(1-2), 1-10.
Sengar, R., Gautam, M., Sengar, R., Garg, S., Sengar, K., & Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology, 196, 73-93.
Seregin, I., Shpigun, L., & Ivanov, V. (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51(4), 525-533.
Seth, C., Misra, V., Chauhan, L., & Singh, R. (2008). Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach. Ecotoxicology and Environmental Safety, 71(3), 711-716.
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., . . . Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513-533.
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment international, 31(5), 739-753.
Shanker, A. K., Djanaguiraman, M., Sudhagar, R., Chandrashekar, C., & Pathmanabhan, G. (2004). Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO 4) roots. Plant science, 166(4), 1035-1043.
Shanker, A. K., Djanaguiraman, M., & Venkateswarlu, B. (2009). Chromium interactions in plants: current status and future strategies. Metallomics, 1(5), 375-383.
Sharma, D., & Mehrotra, S. (1993). Chromium toxicity effects on wheat (Triticum aestivum L. cv. HD 2204). Indian Journal of Environmental Health, 35(4), 330-332.
Sharma, D., Sharma, C., & Tripathi, R. (2003). Phytotoxic lesions of chromium in maize. Chemosphere, 51(1), 63-68.
Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian journal of plant physiology, 17(1), 35-52.
Shrivastava, R., Upreti, R., Seth, P., & Chaturvedi, U. (2002). Effects of chromium on the immune system. FEMS Immunology & Medical Microbiology, 34(1), 1-7.
Siedlecka, A., Samuelsson, G., Gardeström, P., Kleczkowslci, L. A., & Krupa, Z. (1998). The “activatory model” of plant response to moderate cadmium stress-relationship between carbonic anhydrase and Rubisco. Photosynthesis: mechanisms and effects, 2677-2680.
Sigel, A., Sigel, H., & Sigel, R. K. (2013). Cadmium: from toxicity to essentiality, 11, 395-402.
Sigfridsson, K. G., Bernát, G., Mamedov, F., & Styring, S. (2004). Molecular interference of Cd2+ with Photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1659(1), 19-31.
Singh, A. (2001). Effect of trivalent and hexavalent chromium on spinach (Spinacea oleracea L). Environment and Ecology, 19(4), 807-810.
Singh, B., Narwal, R., Jeng, A., & Almas, Å. (1995). Crop uptake and extractability of cadmium in soils naturally high in metals at different pH levels. Communications in Soil Science and Plant Analysis, 26(13-14), 2123-2142.
Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A., & Dubey, R. (2014). Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 251(5), 1047-1065.
StiborovÁ, M. (1988). Cd2+ ions affect the quaternary structure of ribulose-1, 5-bisphosphate carboxylase from barley leaves. Biochemie und Physiologie der Pflanzen, 183(5), 371-378.
Takahashi, R., Ishimaru, Y., Nakanishi, H., & Nishizawa, N. K. (2011). Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant signaling & behavior, 6(11), 1813-1816.
Tanaka, K., Fujimaki, S., Fujiwara, T., Yoneyama, T., & Hayashi, H. (2007). Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science and Plant Nutrition, 53(1), 72-77.
Tangahu, B., Abdullah, S., Rozaimah, S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011.
Tomulescu, I., Radoviciu, E., Merca, V. V., & Tuduce, A. D. (2004). Effect of copper, zinc and lead and their combinations on the germination capacity of two cereals. J. Agric. Sci, 15, 39-42.
Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M., & Ma, J. F. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the national academy of sciences, 201005396.
Uraguchi, S., Kamiya, T., Sakamoto, T., Kasai, K., Sato, Y., Nagamura, Y., . . . Fujiwara, T. (2011). Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the national academy of sciences, 108(52), 20959-20964.
Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of experimental botany, 60(9), 2677-2688.
Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J.-F., & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14(6), 1223-1233.
Wagner, G. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Adv. Agron., 51, 173-212.
Wallace, A., Soufi, S., Cha, J., & Romney, E. (1976). Some effects of chromium toxicity on bush bean plants grown in soil. Plant and soil, 44(2), 471-473.
Wang, H., Shan, X., Wen, B., Owens, G., Fang, J., & Zhang, S. (2007). Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environmental and experimental botany, 61(3), 246-253.
Ware, G., Albert, L., Crosby, D., Voogt, P., Hutzinger, O., Knaak, J., . . . Tjeerdema, R. (2006). Reviews of environmental contamination and toxicology: Springer.
Weryszko‐Chmielewska, E., & Chwil, M. (2005). Lead‐Induced Histological and Ultrastructural Changes in the Leaves of Soybean (Glycine max (L.) Merr.). Soil Science & Plant Nutrition, 51(2), 203-212.
Wojas, S., Ruszczyńska, A., Bulska, E., Wojciechowski, M., & Antosiewicz, D. (2007). Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environmental Pollution, 147(3), 584-592.
Xiong, Z., Zhao, F., & Li, M. (2006). Lead toxicity in Brassica pekinensis Rupr.: Effect on nitrate assimilation and growth. Environmental Toxicology: An International Journal, 21(2), 147-153.
Yadav, S. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167-179.
Zachara, J., Resch, C., & Smith, S. (1994). Influence of humic substances on Co2+ sorption by a subsurface mineral separate and its mineralogic components. Geochimica et Cosmochimica Acta, 58(2), 553-566.
Zayed, A., Lytle, C. M., Qian, J.-H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206(2), 293-299.
Zeng, F., Zhao, F., Qiu, B., Ouyang, Y., Wu, F.-B., & Zhang, G. (2011). Alleviation of chromium toxicity by silicon addition in rice plants. Agricultural sciences in China, 10(8), 1188-1196.
Zied, I. (2001). Response of Phaseolus vulgaris to chromium and cobalt treatment. Biol. Plant, 44, 111-115.
Zou, J., Wang, M., Jiang, W., & Liu, D. (2006). Effects of hexavalent chromium (VI) on root growth and cell division in root tip cells of Amaranthus viridis L. Pakistan Journal of Botany, 38(3), 673.
仲曉春, 戴其根, 何理, 陳京都, 孫成明, 高輝, . . . 鄭超. (2012). 不同濃度鎘脅迫下水稻冠層光譜特徵及其預測評價. 農業環境科學學報, 31(3), 448-454.
任紅豔. (2008). 寶山礦區農田土壤—水稻系統重金屬污染的遙感監測. 萬方資料資源系統.
李花粉, 張福鎖, 李春儉, & 毛達如. (1998). 根分泌物對根際重金屬動態的影響.
李高飛、胡光道. (2010). 鉛鋅礦區馬尾松波普特徵與微量元素相關性分析. 河南師範大學學報:自然科學版,18(2)(199-203).
林盈茹. (2017). 氮肥及重金屬對水稻幼苗生長及反射光譜之影響. 臺灣大學農藝學研究所學位論文, 1-286.
林婷, 劉湘南, & 譚正. (2011). 基於 ICA 和高光譜指數的水稻 Zn 污染監測模型. 國土資源遙感, 2, 012.
修麗娜, 劉湘南, & 劉美玲. (2011). 鎘污染水稻高光譜診斷分析與建模. 光譜學與光譜分析, 31(01), 192-196.
徐加寬, 王志強, 楊連新, 董桂春, 吳越, 黃建曄, & 王餘龍. (2005). 土壤鉻含量對水稻生長發育和產量形成的影響. 揚州大學學報: 農業與生命科學版, 26(4), 61-66.
許明晃. (2003). 甘藷葉片色素含量與反射光譜關係之硏究. National Taiwan University.
葉琮裕. (2002). 重金屬污染農地整治: 工程污染防治, 184-191
劉美玲, 劉湘南, 李婷, & 修麗娜. (2010). 水稻鋅污染脅迫的光譜奇異性分析. 農業工程學報,(3), 頁, 191-197.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72351-
dc.description.abstract考量到重金屬可由土壤累積進植株內,並藉由攝食而進入人體而產生危害,監測系統的建立有其必要性,因此希望能建立即時且非破壞性之監測方式以預估土壤有效性重金屬汙染濃度與植體累積金屬含量。本研究以水稻(Oryza sativa)品系台中秈10號及台稉9號(TCS10 and TK9)幼苗為材料,以50、100及200 ppm之氮素濃度分別與鎘(0、50、100及200 µm)、鉻(0、100、200及500 µm)與鉛(0、100、200及500 µm)三種重金屬進行複因子水耕試驗,藉此來模擬田間不同濃度氮肥管理下,土壤溶液中有效性重金屬對水稻幼苗造成之影響,處理一周後測定葉面反射光譜,以反射率計算植生指數 (vegetation index),結合地上部植體重金屬含量資料進行一次與二次多項式回歸分析,並從中建立預測模型。結果顯示受重金屬逆境植株在500-675 nm之黃綠光波段間反射率普遍增加,並在680-750 nm之紅光臨界區間會因為受重金屬逆境反射率普遍往短波長方向位移,產生紅光臨界藍移 (blue shift of red edge) 可做為植株是否受逆境之參考;氮素處裡效應較在100與200 ppm氮處理時較為顯著,其反射率會比氮濃度50 ppm處理組來得低,此外675 nm以上之波段中,各重金屬處理組合之反射光譜一次微分波峰質在高氮濃度下普遍往長波長方向位移,產生紅光臨界紅移 (red shift of red edge)。以常用波段或敏感波段計算之植生指數與植體重金屬濃度間建構線性及多項式模型,其中又以多項式模型較佳且具顯著相關性。因此利用反射光譜計算植生指數,非破壞性預估土壤有效性重金屬汙染物濃度與及植體累積重金屬含量,可能為有效可行之方法。zh_TW
dc.description.abstractConsider that heavy metals can accumulate in plants and soil, and can be intake by people through feeding. To establish a proper monitoring system is necessary. Therefore, we would like to create indices using reflectance spectra to perform nod-destructive estimation the concentration of bioavailable heavy metal in soil and accumulation amount in shoot. In this research, hydroponic rice (Oryza sativa L. cv. Taichung Sen 10 and Taiken 9, TCS10 and TK9) seedlings were treated with treatment combinations of three nitrogen concentrations (50, 100, and 200 ppm) and three heavy metal concentrations (Cd: 0, 50, 100, and 200 µM; Cr: 0, 100, 200 and 500 µM; Pb: 0, 100, 200 and 500 µM) to simulate the effects of heavy metals in soil solution on rice seedlings under different nitrogen management in the field. The reflectance spectra of leaves were recorded and used to calculate vegetation indices to observe the relation between vegataiton indices and the heavy metal concentration in shoots. The result indicated that heavy metals stress inhibited shoot length of rice seedlings. At high metal concentration, the reflectivity in 500-675 nm of yellow and green light would increase and blue shift of red edge would happen at the same time. Additionally, for the treatment effect of high nitrogen concentration, the reflectivity in green light and red light would decreas, and red shift of red edge would happen at the same time. The linear and quadratic models were constructed from the relation between heavy metal concentration of shoot and vegetation indices. The results showed that quadratic models had better correlation. And the quadratic models are more suitable for TK9 than TCS10. Therefore, it appears to be possible to calculate indices using reflectance spectra for non-destructive estimation the concentration of bioavailable heavy metal in soil and accumulation amount in shoot.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:37:03Z (GMT). No. of bitstreams: 1
ntu-107-R05445128-1.pdf: 4862813 bytes, checksum: 798cdc0b2a4a9c54202eb8e3d87f4a6e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vi
表目錄 vii
第一章 、引言 1
一、 重金屬介紹 1
二、 影響重金屬可利用之因子 2
(一) 土壤環境與性質 2
(二) 植物品種特性 3
(三) 重金屬本身特性 3
三、 精準農業-遙測監控 3
第二章 、前人研究 5
一、 鎘之吸收、運移及累積機制 5
二、 鎘對植物的毒害 7
三、 植物鎘汙染監測系統研究現況 9
四、 鉻之吸收、運移及累積機制 9
五、 鉻對植物的毒害 10
六、 鉛之吸收、運移及累積機制 12
七、 鉛對植物的毒害 13
八、 植物鉛汙染監測系統研究現況 15
第三章 、材料及方法 16
一、 水稻幼苗準備 16
二、 處理 16
三、 材料收成 17
第四章 、結果與討論 20
一、 鎘對水稻幼苗的影響 20
二、 鉻對水稻幼苗的影響 25
三、 鉛對水稻幼苗的影響 30
第五章 、總結與展望 35
第六章 、參考文獻 37
dc.language.isozh-TW
dc.title氮肥及鎘、鉻與鉛對水稻幼苗生長與反射光譜之影響zh_TW
dc.titleThe effect of Cd, Cr and Pb with nitrogen on the
growth and reflectance spectra of rice seedlings
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor黃文達
dc.contributor.oralexamcommittee楊棋明,楊志維,陳昶璋
dc.subject.keyword水稻幼苗,重金屬,反射光譜,植生指數,氮素,遙感探測,zh_TW
dc.subject.keywordheavy metal,reflectance spectra,rice seedlings,nitrogen,vegetation index,remote sensing,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201803541
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved