Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72331
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘(Yaow-Ming Chen)
dc.contributor.authorCheng-Jhen Yangen
dc.contributor.author楊承臻zh_TW
dc.date.accessioned2021-06-17T06:35:51Z-
dc.date.available2021-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation[1] Y. Wu, G. Ye and M. Shaaban, 'Analysis of impact of integration of large PV generation capacity and optimization of PV capacity: case studies in Taiwan,' in IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 4535-4548, Nov.-Dec. 2016.
[2] Y. Shi, R. Li, Y. Xue, and H. Li, 'High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking,' IEEE Trans. Power Electron., vol. 31, no. 1, pp. 328-339, Jan. 2016.
[3] L. Zhang, K. Sun, Y. Xing, and J. Zhao, 'Parallel operation of modular single-phase transformerless grid-tied PV inverters with common DC bus and AC bus,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 4, pp. 858-869, Dec. 2015.
[4] L. B. G. Campanhol, S. A. O. da Silva, A. A. de Oliveira, and V. D. Bacon, 'Dynamic performance improvement of a grid-tied PV system using a feed-forward control loop acting on the NPC inverter currents,' IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2092-2101, Mar. 2017.
[5] M. O. Badawy and Y. Sozer, 'Power flow management of a grid tied PV-battery system for electric vehicles charging,' IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1347-1357, Mar./Apr. 2017.
[6] J. F. Ardashir, M. Sabahi, S. H. Hosseini, F. Blaabjerg, E. Babaei, and G. B. Gharehpetian, 'A single-phase transformerless inverter with charge pump circuit concept for grid-tied PV applications,' IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5403-5415, Jul. 2017.
[7] R. Teodorescu, M. Liserre, and P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems, ISBN: 978-0-470-05751-3, Wiley-IEEE Press, Feb. 2011.
[8] M. P. Kazmierkowski, 'Advanced and Intelligent Control in Power Electronics and Drives' in IEEE Industrial Electronics Magazine, vol. 8, no. 3, pp. 72-72, Sept. 2014.
[9] J. Kim and C. Kim, 'A DC–DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications,' IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3827-3833, Aug. 2013.
[10] H. C. Chen and W. J. Lin, 'MPPT and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters,' IEEE Trans. Power Electron., vol. 29, no. 1, pp. 29-35, Jan. 2014.
[11] D. G. Montoya, C. A. Ramos-Paja, and R. Giral, 'Improved design of sliding-mode controllers based on the requirements of MPPT techniques,' IEEE Trans. Power Electron., vol. 31, no. 1, pp. 235-247, Jan. 2016.
[12] C.-Y. Tang, Y.-T. Chen, and Y.-M. Chen, 'PV power system with multi-mode operation and low-voltage ride-through capability,' IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7524-7533, Dec. 2015.
[13] N. Kumar, T. K. Saha, and J. Dey, 'Sliding-mode control of PWM dual inverter-based grid-connected PV system: modeling and performance analysis,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 2, pp. 435-444, Jun. 2016.
[14] G. Escobar, S. Pettersson, C. N. M. Ho, and R. Rico-Camacho, 'Multisampling Maximum Power Point Tracker (MS-MPPT) to compensate irradiance and temperature changes,' in IEEE Transactions on Sustainable Energy, vol. 8, no. 3, pp. 1096-1105, July 2017.
[15] T. K. Soon and S. Mekhilef, 'A fast-converging MPPT technique for photovoltaic system under fast-varying solar irradiation and load resistance,' in IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 176-186, Feb. 2015.
[16] T. Esram and P. L. Chapman, 'Comparison of photovoltaic array Maximum Power Point Tracking Techniques,' in IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, June 2007.
[17] C. W. Chen and Y. M. Chen, 'Analysis of the series-connected distributed maximum power point tracking PV system,' 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015, pp. 3083-3088.
[18] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, 'Overview of control and grid synchronization for distributed power generation systems,' in IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
[19] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, 'Evaluation of current controllers for distributed power generation systems,' in IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 654-664, March 2009.
[20] IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems,' in IEEE Std 929-2000.
[21] F. Blaabjerg, Zhe Chen, and S. B. Kjaer, 'Power electronics as efficient interface in dispersed power generation systems,' in IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184-1194, Sept. 2004.
[22] Y. M. Chen, H. C. Wu, Y. C. Chen, K. Y. Lee, and S. S. Shyu, 'The AC line current regulation strategy for the grid-connected PV system,' in IEEE Transactions on Power Electronics, vol. 25, no. 1, pp. 209-218, Jan. 2010.
[23] G. Ding et al., 'Adaptive DC-Link voltage control of two-stage photovoltaic inverter during low voltage ride-through operation,' in IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4182-4194, June 2016.
[24] Y. Yang, F. Blaabjerg, and Z. Zou, 'Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems,' in IEEE Transactions on Industry Applications, vol. 49, no. 5, pp. 2167-2176, Sept.-Oct. 2013.
[25] Y. Yang, F. Blaabjerg, and H. Wang, 'Low voltage ride-through of single-phase transformerless photovoltaic inverters,' 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 4762-4769.
[26] Y. Bae, T. K. Vu, and R. Y. Kim, 'Implemental control strategy for grid stabilization of grid-connected PV system based on German grid code in symmetrical low-to-medium voltage network,' in IEEE Transactions on Energy Conversion, vol. 28, no. 3, pp. 619-631, Sept. 2013.
[27] Y. Xue, K. C. Divya, G. Griepentrog, M. Liviu, S. Suresh, and M. Manjrekar, 'Towards next generation photovoltaic inverters,' 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, 2011, pp. 2467-2474.
[28] Y. Yang, P. Enjeti, F. Blaabjerg, and H. Wang, 'Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems,' 2013 IEEE Industry Applications Society Annual Meeting, Lake Buena Vista, FL, 2013, pp. 1-8.
[29] F. J. Lin, K. C. Lu, and B. H. Yang, 'Recurrent fuzzy cerebellar model articulation neural network based power control of a single-stage three-phase grid-connected photovoltaic system during grid faults,' IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1258-1268, Feb. 2017.
[30] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, 'Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control,' IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516-5528, Sept. 2015.
[31] D. P. Hohm and M. E. Ropp, 'Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed,' in Proc. IEEE. Photovoltaic Specialists Conference, Anchorage, AK, 2000, pp. 1699-1702.
[32] A. Durgadevi, S. Arulselvi, and S. P. Natarajan, 'Study and implementation of maximum power point tracking (MPPT) algorithm for photovoltaic systems,' in Proc. IEEE. ICEES, Newport Beach, CA, 2011, pp. 240-245.
[33] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, 'Optimization of perturb and observe maximum power point tracking method,' IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
[34] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, 'Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,' in Proc. IEE. Generation, Transmission and Distribution, vol. 142, no. 1, pp. 59-64, Jan. 1995.
[35] Meersman, Bart, Bert Renders, Lieven Degroote, Tine Vandoorn, Jeroen De Kooning, and Lieven Vandevelde. “Overview of three-phase inverter topologies for distributed generation purposes.” in i-SUP 2010 : Innovation for Sustainable Production, Proceedings, 24–28.
[36] M. Dai, J. J. M.N. Marwali, and A. Keyhani, “A three-phase four-wire inverter control technique for a single distributed generation unit in island mode,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 322–331, Jan. 2008.
[37] J. Liang, T. C. Green, C. Feng, and G. Weiss, “Increasing voltage utilization in split-link four-wire inverters,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1562–1569, Jun. 2009.
[38] M. P. Kazmierkowski and L. Malesani, 'Current control techniques for three-phase voltage-source PWM converters: a survey,' in IEEE Transactions on Industrial Electronics, vol. 45, no. 5, pp. 691-703, Oct 1998.
[39] M. A. Rahman, T. S. Radwan, A. M. Osheiba, and A. E. Lashine, 'Analysis of current controllers for voltage-source inverter,' in IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 477-485, Aug 1997.
[40] L. Malesani and P. Tenti, 'A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency,' in IEEE Transactions on Industry Applications, vol. 26, no. 1, pp. 88-92, Jan/Feb 1990.
[41] D. M. Brod and D. W. Novotny, 'Current control of VSI-PWM inverters,' in IEEE Transactions on Industry Applications, vol. IA-21, no. 3, pp. 562-570, May 1985.
[42] C. H. Chang, F. Y. Wu, and Y. M. Chen, 'Modularized bidirectional grid-connected inverter with constant-frequency asynchronous sigma–delta modulation,' in IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4088-4100, Nov. 2012.
[43] E. Afshari et al., 'Control strategy for three-phase grid-connected PV inverters enabling current limitation under unbalanced faults,' in IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8908-8918, Nov. 2017.
[44] C. Y. Tang, L. H. Kao, Y. M. Chen, and S. Y. Ou, 'Dynamic power decoupling strategy for three-phase PV power systems under unbalanced grid voltages,' in IEEE Transactions on Sustainable Energy.
[45] R. Ghosh and G. Narayanan, 'Control of three-phase four-wire PWM rectifier,' in IEEE Transactions on Power Electronics, vol. 23, no. 1, pp. 96-106, Jan. 2008.
[46] M. Liang and T. Q. Zheng, 'Synchronous PI control for three-phase grid-connected photovoltaic inverter,' Chinese Control and Decision Conference, Xuzhou, 2010, pp. 2302-2307.
[47] J. Jung, S. Lim, and K. Nam, 'A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor,' IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1124-1131, Sep./Oct. 1999.
[48] B.-G. Gu and K. Nam, 'A DC-link capacitor minimization method through direct capacitor current control,' IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 573-581, Mar./Apr. 2006.
[49] C. Y. Tang, Y. F. Chen, Y. M. Chen, and Y. R. Chang, 'DC-Link voltage control strategy for three-phase back-to-back active power conditioners,' in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6306-6316, Oct. 2015.
[50] R. C. Leborgne, “Voltage sags characterisation and estimation,” in Department of Energy and Environment Division of Electric Power Engineering. Goteborg, Sweden: Chalmers Univ. Technol., 2005, Licentiate Eng., p. 81.
[51] M. H. J. Bollen, Understanding Power Quality Problems—Voltage Sags and Interruptions. New York: IEEE Press, 1999.
[52] Comitato Elettrotecnico Italiano, CEI 0-21: Reference technical rules for connecting users to the active and passive LV distribution companies of electricity.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72331-
dc.description.abstract本論文提出一種應用於併網太陽能換流器的自主式直流鏈電壓控制策略,目的在於解決當電網電壓驟降致使前後級電路功率不對等之問題,並能讓併網太陽能換流器在電網電壓驟降情況下持續正常的運作。當電網電壓驟降時,由於後級之換流器可能會因為線電流之最大額定電流限制導致其最大輸出功率受限,嚴重時將導致其失去穩定電容鏈電壓之能力。在此情況下,前級之轉換器則必須放棄其最大功率追蹤之操作模式來幫助穩定電容電壓。然而,欲達到此目的,則必須在前後級電路間建立起通訊機制,以達成正確的操作模式切換。不過,如此一來將會提升整體電路的複雜度及額外成本,同時,電路的可擴展性也會隨之而降低,除此之外,在通訊機制中的雜訊干擾更可能會降低整體電路之可靠度。
為了避免上述所提到的缺點,本論文新提出不需要通訊機制的直流鏈電壓雙階控制策略。在此控制策略中,直流鏈電壓將會被控制在不同的電壓準位中,而太陽能換流器的前級轉換器將能自動依據此時的直流鏈電壓大小值,來決定是否需要改變自身的操作模式。因為是自主式操作,因此不需要外加元件或是修改電路便能實現此控制策略。本論文將會詳細介紹並說明直流鏈電壓雙階控制策略之操作原理與數學公式推導,並且將會藉由電腦模擬以及一組三相4kVA原型機的實驗結果來驗證此控制策略之可行性與表現。
zh_TW
dc.description.abstractAn autonomous control strategy, named DC-Link Voltage Dual-Level Control Strategy (DDLC), is proposed in this thesis to solve the power flow imbalance problem of the grid-tied PV inverter during grid voltage sags. When a grid voltage sag occurs, the rear-end inverter may lose the ability to regulate the dc-link voltage due to the limitation of the rated output current. Under this condition, the front-end converter should abandon the Maximum Power Point Tracking (MPPT) function to help to regulate the dc-link voltage. As a result, the communication scheme between the two-stage circuits must be established. However, the communication scheme may increase the cost and circuit complexity and further reduce the scalability and the flexibility. Also, the reliability of the PV inverter may also be reduced due to noise interference problem.
To avoid these drawbacks, an autonomous DDLC strategy is proposed. The dc-link voltage is controlled within two different levels and the operation mode of the front-end converter can be automatically changed according to the dc-link voltage value. Besides, to realize the proposed DDLC strategy, no extra sensors or devices are required. Details of the operation principle and the mathematical derivations are provided in this thesis. The simulations and experimental results of a three-phase 4 kVA prototype circuit are also presented to validate the performance of the proposed DDLC strategy.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:35:51Z (GMT). No. of bitstreams: 1
ntu-107-R05921024-1.pdf: 4305981 bytes, checksum: 5500f1d92d9cb7481ca27cf2673a0a9e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xii
ABBREVIATIONS xiii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Paper Review and Motive 2
1.3 Outline 4
Chapter 2 Three-Phase Grid-Tied PV Inverters 6
2.1 PV Panel 7
2.2 Power Converter 9
2.2.1 Maximum Power Point Tracking 9
2.2.2 Converter Topology 12
2.3 Three-phase Inverter 13
2.3.1 Circuit Configuration 13
2.3.2 Sinusoidal Pulse Width Modulation 15
2.3.3 Power Flow Control 18
2.3.4 DC-Link Voltage Control 22
2.4 Grid Fault Condition 25
2.4.1 Types of Grid Fault 26
2.4.2 Power Imbalance Issue 28
Chapter 3 DC-Link Volatge Dual-Level Control Strategy 32
3.1 DDLC Concept and Operation Principle 32
3.2 Mathematical Derivation 35
3.2.1 Optimal Current Calculation for DC-Link Voltage Control Mode 35
3.2.2 Voltage Gap Between two Levels 39
3.3 Computer Simulation and Verification 44
3.3.1 Normal Operation 45
3.3.2 Under Grid Fault Condition 46
Chapter 4 Hardware Implementation 51
4.1 Power Stage 52
4.1.1 Power Switch 52
4.1.2 Design of DC-Link Capacitor 54
4.1.3 Pre-charge Resistor and Bypass Relay 55
4.2 Control Stage 56
4.2.1 Microcontroller 57
4.2.2 Peripheral Circuit 57
4.2.3 Voltage and Current Detection Circuit 61
4.2.4 Driver Circuit 65
4.3 System Control Procedure 67
4.3.1 Control Procedure for the Power Converter 67
4.3.2 Control Procedure for the Three-Phase Inverter 72
Chapter 5 Experimental Verification 78
5.1 Circuit Diagram and Test Condition 78
5.2 Normal Operation 80
5.3 Under Grid Fault Condition 83
Chapter 6 Conclusion and Future Research 96
6.1 Summary and Major Contributions 96
6.2 Suggestions for Future Research 97
REFERENCES 98
dc.language.isoen
dc.subject直流鏈電壓控制zh_TW
dc.subject併網太陽能換流器zh_TW
dc.subject電網電壓驟降zh_TW
dc.subject功率不平衡zh_TW
dc.subjectdc-link voltage controlen
dc.subjectgrid-tied PV inverteren
dc.subjectgrid voltage sagen
dc.subjectpower imbalanceen
dc.title併網太陽能換流器之直流鏈電壓雙階控制策略zh_TW
dc.titleDC-Link Voltage Dual-Level Control Strategy for Grid-Tied PV Invertersen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳偉倫(Woei-Luen Chen),陳景然(Ching-Jan Chen)
dc.subject.keyword併網太陽能換流器,電網電壓驟降,功率不平衡,直流鏈電壓控制,zh_TW
dc.subject.keywordgrid-tied PV inverter,grid voltage sag,power imbalance,dc-link voltage control,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201803701
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved