Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭淑芬
dc.contributor.authorShu-Ling Wuen
dc.contributor.author吳舒齡zh_TW
dc.date.accessioned2021-06-17T06:35:15Z-
dc.date.available2021-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation1. WHO, 'Indoor air quality: organic pollutants' Report on a WHO Meeting, Berlin, 1989.
2. 行政院環保署, '揮發性有機物空氣污染管制及排放標準', 2013.
3. Faber, J.; Brodzik, K., Air quality inside passenger cars. AIMS Environmental Science 2017, 4 (1), 112-133.
4. George, W., Reviews of Environmental Contamination and Toxicology,1966.
5. 吳金村, '森林釋出異物二烯對空氣品質影響' 林業研究專訓, 2004, 16 (6).
6. 張志忠, '綠色植物:都市空氣品質改善的幫手?' 中央研究院週報, 2014.
7. Massolo, L.; Rehwagen, M.; Porta, A.; Ronco, A.; Herbarth, O.; Mueller, A., Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ Toxicol 2010, 25 (4), 339-49.
8. Seinfeld, J. H.; Pandis, S. P., Atmospheric chemistry and physics. John Wiley & Sons, Inc. 1998.
9. US Environmental Protection Agency, 'Volatile Organic Compounds Emissions by Source Sector' 2014,網址:https://www.epa.gov
10. 朱信.'固定污染源揮發性有機物排放減量技術及成效評估研究' 環保署/國科會空污防制科研計畫, 2003.
11. William G., 'Photochemical smog.'
網址:https://www.mrgscience.com/ess-topic-63-photochemical-smog.html.
12. Friedlander, S. K.; Seinfeld, J. H., A Dynamic Model of Photochemical Smog. current research 1969, 3 (11).
13. Ryerson, T. B.; Trainer, M.; Hollowa, J. S.; Parrish, D. D., Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. R EPORTS 2001, 292 (27).
14. 司洪濤; 周明顯,'化工業VOC臭味廢氣改善成功案例' 經濟部工業局產業技術輔導與推廣計畫, 2002.
15. 周明顯, '排氣中揮發性有機物之生物洗滌處理法', 2002.
16. 林文川, '製程 VOCs 廢氣之收集與處理' 工業污染防治期刊, 2009, 110.
17. Howard, P. H., Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Volume I, 1993
18. US Environmental Protection Agency, 'Investigation of selected potential environmental contaminants: formaldehyde.' 1976.
19. Kim, S.; Kim, H. J., Comparison of formaldehyde emission from building finishing materials at various temperatures in under heating system. Indoor Air 2005, 15 (5), 317-25.
20. Zhang, L.; Steinmaus, C.; Eastmond, D. A.; Xin, X. K.; Smith, M. T., Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms. Mutat Res 2009, 681 (2-3), 150-68.
21. Wolfgang, H.; Binder; Manfred, D., Melamine–Formaldehyde Resins. Encyclopedia of Polymer Science and Technology 2004, 10, 369-385.
22. National Toxicology Program, Department of Health and Human Services, Report on Carcinogens, Fourteenth Edition.2016.
23. International Agency for Research on Cancer, Agents Classified by the IARC Monographs, 2012
24. United States Environmental Protection Agency. 'Health and Environmental Effects Profile for Formaldehyde' 網址:
https://www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants,1988
25. Cogliano, V.; Grosse, Y.; Baan, R.; Straif, K.; Secretan, M.; Ghissassi, F., Meeting Report: Summary of IARC Monographs on Formaldehyde, 2-Butoxyethanol, and 1-tert-Butoxy-2-Propanol. Environmental Health Perspectives 2005, 113 (9), 1205-1208.
26. Zhang, L.; Freeman, L. E.; Nakamura, J.; Hecht, S. S.; Vandenberg, J. J.; Smith, M. T.; Sonawane, B. R., Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen 2010, 51 (3), 181-91.
27. Amiri, A.; Pryor, E.; Rice, M., Formaldehyde Exposure During Pregnancy. The American Journal of Maternal/Child Nursing 2015, 40 (3), 180-185.
28. Duong, A.; Steinmaus, C.; McHale, C. M.; Vaughan, C. P.; Zhang, L., Reproductive and developmental toxicity of formaldehyde: a systematic review. Mutat Res 2011, 728 (3), 118-38.
29. 鄭乃云, '合板製造業的甲醛危害.'勞工安全衛生簡訊, 2014, 123, 18-19.
30. Liteplo, R. G.; Beauchamp, R.; Meek, M. E., Formaldehyde.2002.
31. Puppe, L.; Schwochow, F., Zeolites-Their Synthesis, Structure, and Applications. Angew. Chem inrernar. Edit. 1975, 14 (9), 620-628.
32. Weigel, O. S.,The absorption of organic liquid vapors by chabazite. Z. Kristallogr. 1925, 61, 125-154.
33. McBain, J. W., The Sorption of Gases and Vapours by Solids. J. Phys. Chem. 1933, 37 (1), 149.
34. Pujadó, P.; Rabó, J.; Antos, G.; Gembicki, S., Industrial catalytic applications of molecular sieves. Catalysis Today 1992, 13 (1), 113-141.
35. Masoudian, S.; Sadighi, S.; Abbasi, A., Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis 2013, 8 (1).
36. Subhash, B., Zeolite Catalysts: Principles and Applications.CRC,1989.
37. Baerlocher, C. H.; Mccusker, L. B., Atlas of Zeolite Framework types 2007.
38. Tao, S.; Li, X.; Xu, R.; Li, D.; Zhang, Q.; Ma, H.; Xu, Y.; Tian, Z., One-step synthesis of honeycomb-like AlPO4-11 macrostructures based on epitaxial growth and phase transformation mechanisms. Chem Commun (Camb) 2016, 52 (11), 2253-6.
39. Mccusker, L. B.; Liebau, F.; Engelahardt, G., Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Pure Appl. Chem 2001, 73 (2), 381-394.
40. Catalytic Properties of Micro- and Mesoporous Nanomaterials, 網址:
http://what-when-how.com/nanoscience-and-nanotechnology/catalytic-properties-of-micro-and-mesoporous-nanomaterials-part-1-nanotechnology/.
41. Liao, Y. C. Studies on Fluorination of Zeolites and Amine Functionalization of Mesoporous Materials. National Central University, Master thesis, 2007.
42. Union Carbide Corp.,'Crystalline zeolite Y.', United States Patent, 1964.
43. Kim, H. S.; Yoon, K. B., Preparation and characterization of CdS and PbS quantum dots in zeolite Y and their applications for nonlinear optical materials and solar cell. Coordination Chemistry Reviews 2014, 263-264, 239-256.
44. Sen, D.; Seff, K.; Kim, C. W.; Heo, N. H., Introducing copper ions into zeolite Y by the thallous ion exchange method: single crystal structure of Cu21.6Tl39.2[Si121Al71O384]– FAU. J Porous Mate 2014, 21, 321–330.
45. 劉凱. '沸石吸附型觸媒雙功能材料之吸脫附/觸媒催化可行性研究.'國立交通大學環境工程研究所碩士論文, 2010.
46. Othman, R. B., The Effect of Sintering Temperatures on the Microstructure and Properties of Β-TCP. Australian Journal of Basic and Applied Sciences 2014, 8 (5), 492-497.
47. Argyle, M.; Bartholomew, C., Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5 (1), 145-269.
48. Bai, B. Y.; Qiao, Q.; Li, J. H.; Hao, J. I., Progress in research on catalysts for catalytic oxidation of formaldehyde. Chinese Journal of Catalysis 2016, 37, 102-122.
49. Zhang, C.; He, H.; Tanaka, K., Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental 2006, 65 (1-2), 37-43.
50. An, N.; Yu, Q.; Liu, G.; Li, S.; Jia, M.; Zhang, W., Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method. J. Hazard. Mater. 2011, 186 (2-3), 1392-7.
51. An, N. H.; Wu, P.; Li, S. Y.; Jia, M. J.; Zhang, W. X., Catalytic oxidation of formaldehyde over Pt/Fe2O3 catalysts prepared by different method. ApSS 2013, 285, 805-809.
52. Zhang, C.; Liu, F.; Zhai, Y.; Ariga, H.; Yi, N.; Liu, Y.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H., Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angew. Chem. Int. Ed. Engl. 2012, 51 (38), 9628-32.
53. Zhang, J.; Jin, J.; Li, C.; Shen, Y.; Han, L.; Hu, Z.; Di, X.; Liu, Z., Creation of three-dimensionally ordered macroporous Au/CeO2 catalysts with controlled pore sizes and their enhanced catalytic performance for formaldehyde oxidation. Applied Catalysis B: Environmental 2009, 91 (1-2), 11-20.
54. Li, H. F.; Zhang, N.; Chen, P.; Luo, M. F.; Lu, J. Q., High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation. Applied Catalysis B: Environmental 2011, 110, 279-285.
55. Zhang, J. H.; Li, Y. B.; Zhang, Y.; Chen, M.; Wang, L.; Zhang, C. B.; He, H., Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation. Sci. Rep. 2015, 5, 12950.
56. Qu, Z. P.; Shen, S. J.; Chen, D.; Wang, Y., Highly active Ag/SBA-15 catalyst using post-grafting method for formaldehyde oxidation. J. Mol. Catal. A: Chem. 2012, 356, 171-177.
57. Yoshika, S., Oxidative decomposition of formaldehyde by metal oxides at room temperature. AtmEn 2002, 36, 5543–5547.
58. Zhang, J. H.; Li, Y. B.; Wang, L.; Zhang, C. B.; He, H., Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catalysis Science & Technology 2015, 5 (4), 2305-2313.
59. Zhu, L.; Wang, J.; Rong, S.; Wang, H.; Zhang, P., Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Applied Catalysis B: Environmental 2017, 211, 212-221.
60. Lu, S. H.; Wang, F.; Chen, C. C.; Huang, F. L.; Li, K. L., Catalytic oxidation of formaldehyde over CeO2 -Co3O4 catalysts. Journal of Rare Earths 2017, 35 (9), 867-874.
61. Pei, J. J.; Zhang, J. J., Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. HVAC&R Research 2011, 17 (4), 476–503.
62. Zhu, X.; Yu, J.; Jiang, C.; Cheng, B., Catalytic decomposition and mechanism of formaldehyde over Pt-Al2O3 molecular sieves at room temperature. Phys Chem Chem Phys 2017, 19 (10), 6957-6963.
63. Li, S.; Zheng, A.; Su, Y.; Fang, H.; Shen, W.; Yu, Z.; Chen, L.; Deng, F., Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations. Phys Chem Chem Phys 2010, 12 (15), 3895-903.
64. Lara, H. H.; Romero-Urbina, D.; Pierce, C.; Lopez-Ribot, J.; Arellano-Jimenez, M.; Jose-Yacaman, M., Effect of silver nanoparticles on Candida albicans biofilms:an ultrastructural study. J Nanobiotechnology 2015, 13, 91.
65. Chen, D.; Qu, Z. P.; Shen, S. J.; Li, X. Y.; Shi, Y.; Wang, Y.; Fu, Q.; Wu, J. J., Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde. Catalysis Today 2011, 175 (1), 338-345.
66. Miyamoto, T.; Niimi, H.; Kitajima, Y.; Naito, T.; Asakura, K., Ag L3-Edge X-ray Absorption Near-Edge Structure of 4d10 (Ag+) Compounds: Origin of the Edge Peak and Its Chemical Relevance. J. Phys. Chem. A 2010, 114, 4093–4098.
67. Włodzimierz, M.; Magdalena, K.; Katarzyna, B., FT-IR studies of zeolites from different structural groups. CHEMIK 2011, 65 (7), 667-674.
68. Król, M.; Mozgawa, W.; Jastrzębski, W.; Barczyk, K., Application of IR spectra in the studies of zeolites from D4R and D6R structural groups. Microporous Mesoporous Mater. 2012, 156, 181-188.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72320-
dc.description.abstract由於甲醛是常見的室內揮發性有機物,其主要來源為居家房屋內的裝修建材,人體若長時間低濃度下接觸到甲醛,會對人體產生危害,輕則會造成皮膚或呼吸道感染,嚴重則會有致癌的風險。目前移除甲醛的方法中,觸媒氧化法是最受矚目的,因為此方法可以將甲醛直接氧化轉換成無毒的二氧化碳和水,然而能在室溫下催化此反應的的都是貴金屬觸媒,如: Pt, Pd, Au;因其價格昂貴,科學界與產業界都希望能找到取代性的觸媒材料,以達到降低成本的目的,並且能實際應用於產業中。
本論文是以含浸法將銀奈米粒子負載於不同離子交換的Y型沸石與鈉離子型的X型沸石上,利用X光粉末繞射(XRD)、恆溫氮氣吸脫附、程式控溫還原(H2-TPR)、誘導偶極電漿質譜(ICP-MS)、掃描式電子顯微鏡(SEM)、高解析穿透式電子顯微鏡(HR-TEM)、X光吸收光譜(XAS)、固態核磁共振光譜(NMR)、熱重分析(TGA)、傅立葉轉換式紅外線光譜(FTIR)來鑑定觸媒材料的性質。甲醛催化反應測試是利用固定床流體系統,在甲醛濃度為320 ppm的情況下觀察觸媒的催化效果,再依據行政院環境保護署所頒布的「排放管道中甲醛標準鑑測方法-4-胺基-3-聠基-硫醇基-1,2,4三唑比色法」 (NIEA A724.72B)檢測方法來偵測反應前後甲醛濃度的改變,並且探討不同離子交換之沸石、煆燒步驟、還原步驟以及不同矽鋁比之Faujasite沸石等變因對於催化結果所造成的影響。從固態核磁共振光譜圖可以發現MnY的沸石在離子交換的過程結構受到破壞,因此Ag/MnY是三種離子交換沸石中甲醛轉換率最低的,此外經過還原步驟後的銀觸媒其表面上的銀奈米顆粒相較只經過煆燒步驟的銀觸媒,從高解析穿透式電子顯微鏡圖中可以發現還原步驟讓銀顆粒變大,因此其催化效果較差。在本論文所探討的Y型沸石中,6Ag/NaY-c的催化效果最好,在反應溫度為100 ℃反應24小時後,有100%的甲醛轉換率,當反應溫度降為80 ℃時,仍有70%左右的甲醛轉換率,雖然在溼度為50%的條件下,其甲醛轉換率下降幅度比6Ag/HY-c大,但其催化效果仍然較好。相較之下,在反應溫度為80 ℃,6Ag/NaX-c催化效果較6Ag/NaY-c好,反應8小時後仍有80% 的轉換率。HCHO-TPD的結果顯示,NaX對於甲醛的吸附能力較NaY好,推測因為NaX的矽鋁比較NaY低,所含的鈉離子較NaY多,而鈉離子會幫助具有極性的甲醛分子吸附,增加與銀粒子作用的甲醛表面濃度,因此在本論文中發現使用矽鋁比值低的X型沸石作為銀載體其催化效果較矽鋁比值高的Y型沸石佳。
zh_TW
dc.description.abstractFormaldehyde (HCHO) is one of the most common indoor pollutants, coming from building and decorative materials. Long-term exposure to ppm level of HCHO can cause serious health problems. Catalytic oxidation of HCHO into harmless CO2 and H2O is the most promising technique to remove HCHO. Noble metals (e.g., Pt, Pd and Au) are efficient catalysts in oxidation of HCHO at ambient temperature. However, the high cost is the drawback.
In this work, silver was impregnated on zeolite Y exchanged with different ions and NaX. Catalysts were characterized by XRD, BET, H2-TPR, SEM, HR-TEM, 27Al-NMR, ICP-MS, TGA, FTIR and XAS. Catalytic activity test was performed in a fixed-bed system under a flow of 320 ppm HCHO, and the HCHO analysis was based on A724.72B method established by the National Institute of Environmental Analysis (NIEA), Taiwan. The factors which might affect the catalytic activities were examined, including the cations on Y-zeolite, calcination temperature, reduction in hydrogen and different Si/Al ratio of Faujasite zeolte. MnY zeolite has its zeolitic framework destroyed after ion-exchange experiment, and Ag/MnY shows lower catalytic activity compared to other silver catalysts. Besides, the reduced silver catalysts have lower catalytic activities than those only through calcination, due to that the size of silver nanoparticles becomes larger after reduction process. In this study, 6Ag/NaY-c shows highest catalytic activity. It can achieve 100% conversion at 100 ℃and around 70% conversion at 80 ℃. Although the conversion over 6Ag/NaY-c reduced more dramatically than 6Ag/HY-c when relative humidity raising from 0% to 50%. 6Ag/NaY-c still has higher catalytic activity than 6Ag/HY-c. Comparing NaX with NaY, 6Ag/NaX-c shows higher catalytic activity than 6Ag/NaY-c. It can achieve around 80% conversion at 80 ℃. The HCHO-TPD results showed that the adsorption capacity for formaldehyde of NaX is much higher than NaY. It is attributed to that the Si/Al ratio in NaX is lower than that of NaY and higher Na+ ions content helps the adsorption of polar formaldehyde molecules. Therefore, NaX has higher surface formaldehyde concentration to react with Ag particles. In this study, NaX is a more suitable support of silver for formaldehyde degradation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:35:15Z (GMT). No. of bitstreams: 1
ntu-107-R04223177-1.pdf: 5986377 bytes, checksum: 5a57bbda1fdf22b593abf34066326748 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書
謝誌 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xvii
第1章 緒論 1
1.1 揮發性有機物之定義與其分類 1
1.2 揮發性有機物主要來源 2
1.3 揮發性有機物造成之一次汙染10 3
1.4 揮發性有機物造成之二次汙染 4
1.5 常見去除有機揮發物之方法 7
1.5.1 吸附法(Adsorption) 7
1.5.2 液體吸收法(Absorption) 8
1.5.3 生物降解法(Biological degradation) 16 8
1.5.4 冷凝法(Condensation) 9
1.5.5 焚化法(Incineration)17 9
1.6 甲醛(Formaldehyde) 10
1.7 沸石(Zeolites) 11
1.7.1 沸石之簡介 11
1.7.2 沸石之基本結構 12
1.7.3 沸石之應用 15
1.8 X型與Y型沸石 16
1.9 觸媒催化 17
1.9.1 原理 17
1.9.2 觸媒製備方法46 18
1.9.3 觸媒活性衰退現象46 19
1.10 甲醛氧化之相關文獻回顧 21
1.10.1 負載貴金屬觸媒 (Pt、Pd、Au、Ag) 21
1.10.1.1 Pt觸媒 21
1.10.1.2 Au 觸媒 25
1.10.1.3 Ag觸媒 26
1.10.2 金屬氧化物觸媒 28
1.10.3 反應機制探討 31
1.11 研究動機 33
第2章 實驗部分 34
2.1 化學藥品 34
2.2 材料製備 35
2.2.1 製備鈉離子交換之沸石 35
2.2.2 製備錳離子交換之沸石 35
2.2.3 製備銀負載於Y型沸石之觸媒 35
2.2.4 製備銀負載於X型沸石之觸媒 35
2.2.5 製備銀錳雙金屬負載於Y型沸石之觸媒 36
2.3 鑑定材料儀器與方法 37
2.3.1 X光粉末繞射儀(Powder-Xray Diffraction,XRD) 37
2.3.2 氮氣吸脫附等溫曲線 (N2 adsorption-desorption isotherm) 37
2.3.3 程式控溫還原(Temperature Programmed Reduction,TPR) 40
2.3.4 誘導偶極電漿質譜(Inductively Coupled Plasma/Mass Spectroscopy,ICP-MS) 41
2.3.5 紫外-可見光分光光譜儀(Ultraviolet-Visible Spectrometer,UV-VIS) 42
2.3.6 掃描式電子顯微鏡(Scanning Electron Microscopy,SEM) 42
2.3.7 高解析穿透式電子顯微鏡 (High Resolution Transmission Electron Microscopy,HR-TEM) 43
2.3.8 X光吸收光譜(X-ray Absorption Spectroscopy,XAS) 43
2.3.9 固態核磁共振光譜儀(Solid-state Nuclear Magnetic Resonance Spectrometer,SNMR) 43
2.3.10 熱重分析儀(Thermogravimetric Analysis,TGA) 43
2.3.11 傅立葉轉換式紅外線光譜儀(Flourier Transform Infrared Spectroscopy,FTIR) 43
2.4 甲醛降解系統裝置示意圖 44
2.5 甲醛採樣方法 45
2.6 甲醛與AHMT衍生化反應產物之檢量線建立 46
2.7 實際甲醛系統之定量分析 49
第3章 觸媒鑑定結果與討論 51
3.1 27Al MAS NMR光譜 51
3.2 X光粉末繞射圖譜 52
3.2.1 Y型沸石 52
3.2.2 X型沸石 59
3.3 氮氣吸脫附等溫曲線圖 60
3.4 H2-TPR圖譜 65
3.5 ICP-MS分析結果 68
3.6 掃描式電子顯微鏡圖 69
3.7 高解析穿透式電子顯微鏡圖 71
3.8 Ag L3-edge X光吸收光譜圖 75
第4章 甲醛吸附及降解結果 78
4.1 甲醛吸附 78
4.2 空白實驗 84
4.3 不同離子交換Y 型沸石對甲醛降解之效率 84
4.4 負載銀錳於Y型沸石對於甲醛降解之效果 85
4.5 負載銀之不同離子交換Y 型沸石對甲醛降解之效果 86
4.5.1 反應溫度之影響 86
4.5.2 煆燒步驟之影響 87
4.5.3 還原步驟之影響 89
4.5.4 改變銀之負載量 90
4.5.5 相對濕度之影響 92
4.5.6 負載銀之不同Faujasite沸石對甲醛降解之效率 93
4.6 催化反應後之觸媒鑑定 94
4.6.1 高解析穿透式電子顯微鏡圖 94
4.6.2 Ag L3-edge X光吸收光譜圖 97
4.6.3 熱重分析結果 99
4.6.4 紅外線光譜圖 100
4.7 本實驗反應機制推測 102
第5章 結論 103
第6章 參考資料 104
dc.language.isozh-TW
dc.title銀奈米粒子負載於沸石應用於甲醛吸附與降解zh_TW
dc.titleSilver nanoparticles supported on zeolites as the catalyst for formaldehyde adsorption and degradationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱靜雯,游文岳
dc.subject.keyword甲醛,降解,銀,奈米粒子,沸石,zh_TW
dc.subject.keywordformaldehyde,degradation,silver,nanoparticle,zeolite,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201803671
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved