Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛景中
dc.contributor.authorShu-Min Yangen
dc.contributor.author楊舒閔zh_TW
dc.date.accessioned2021-05-19T17:40:25Z-
dc.date.available2022-08-16
dc.date.available2021-05-19T17:40:25Z-
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-08
dc.identifier.citationLin, W.-C.; Lee, S.-H.; Karakachian, M.; Yu, B.-Y.; Chen, Y.-Y.; Lin, Y.-C.; Kuo, C.-H.; Shyue, J.-J., Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Physical Chemistry Chemical Physics 2009, 11 (29), 6199-6204.
Lin, Y.-C.; Yu, B.-Y.; Lin, W.-C.; Lee, S.-H.; Kuo, C.-H.; Shyue, J.-J., Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups. Journal of colloid and interface science 2009, 340 (1), 126-130.
Kuo, C.-H.; Chang, H.-Y.; Liu, C.-P.; Lee, S.-H.; You, Y.-W.; Shyue, J.-J., Effect of surface chemical composition on the surface potential and iso-electric point of silicon substrates modified with self-assembled monolayers. Physical Chemistry Chemical Physics 2011, 13 (9), 3649-3653.
Kao, W.-L.; Chang, H.-Y.; Yen, G.-J.; Kuo, D.-Y.; You, Y.-W.; Huang, C.-C.; Kuo, Y.-T.; Lin, J.-H.; Shyue, J.-J., Adsorption behavior of plasmid DNA on binary self-assembled monolayers modified gold substrates. Journal of colloid and interface science 2012, 382 (1), 97-104.
Chang, H.-Y.; You, Y.-W.; Liao, H.-Y.; Shyue, J.-J., Binary self-assembled monolayers modified Au nanoparticles as carriers in biological applications. Biointerphases 2014, 9 (4), 041005.
Lin, J.-H.; Chang, H.-Y.; Kao, W.-L.; Lin, K.-Y.; Liao, H.-Y.; You, Y.-W.; Kuo, Y.-T.; Kuo, D.-Y.; Chu, K.-J.; Chu, Y.-H., Effect of surface potential on extracellular matrix protein adsorption. Langmuir 2014, 30 (34), 10328-10335.
Chang, H.-Y.; Huang, C.-C.; Lin, K.-Y.; Kao, W.-L.; Liao, H.-Y.; You, Y.-W.; Lin, J.-H.; Kuo, Y.-T.; Kuo, D.-Y.; Shyue, J.-J., Effect of surface potential on NIH3T3 cell adhesion and Proliferation. The Journal of Physical Chemistry C 2014, 118 (26), 14464-14470.
Chang, H.-Y.; Kao, W.-L.; You, Y.-W.; Chu, Y.-H.; Chu, K.-J.; Chen, P.-J.; Wu, C.-Y.; Lee, Y.-H.; Shyue, J.-J., Effect of surface potential on epithelial cell adhesion, proliferation and morphology. Colloids and Surfaces B: Biointerfaces 2016, 141, 179-186.
Bigelow, W.; Pickett, D.; Zisman, W., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
Sagiv, J.; Polymeropoulos, E., Adsorbed monolayers. Molecular organization and electrical properties. Berichte der Bunsengesellschaft für physikalische Chemie 1978, 82 (9), 883-883.
Bain, C. D.; Whitesides, G. M., Formation of two-component surfaces by the spontaneous assembly of monolayers on gold from solutions containing mixtures of organic thiols. Journal of the american chemical society 1988, 110 (19), 6560-6561.
Shyue, J.-J.; De Guire, M. R.; Nakanishi, T.; Masuda, Y.; Koumoto, K.; Sukenik, C. N., Acid− base properties and zeta potentials of self-assembled monolayers obtained via in situ transformations. Langmuir 2004, 20 (20), 8693-8698.
Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C. G.; Meier, W., Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012, 7 (1), 9.
Kocak, G.; Tuncer, C.; Bütün, V., pH-Responsive polymers. Polymer Chemistry 2017, 8 (1), 144-176.
Meka, V. S.; Sing, M. K.; Pichika, M. R.; Nali, S. R.; Kolapalli, V. R.; Kesharwani, P., A comprehensive review on polyelectrolyte complexes. Drug discovery today 2017, 22 (11), 1697-1706.
Kanamala, M.; Wilson, W. R.; Yang, M.; Palmer, B. D.; Wu, Z., Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 2016, 85, 152-167.
Freiberg, S.; Zhu, X., Polymer microspheres for controlled drug release. International journal of pharmaceutics 2004, 282 (1-2), 1-18.
Snabe, T.; Neves-Petersen, M. T.; Petersen, S. B., Enzymatic lipid removal from surfaces—lipid desorption by a pH-induced “electrostatic explosion”. Chemistry and physics of lipids 2005, 133 (1), 37-49.
Hrubý, M.; Koňák, Č.; Ulbrich, K., Polymeric micellar pH-sensitive drug delivery system for doxorubicin. Journal of Controlled Release 2005, 103 (1), 137-148.
Gupta, P.; Vermani, K.; Garg, S., Hydrogels: from controlled release to pH-responsive drug delivery. Drug discovery today 2002, 7 (10), 569-579.
Harrison, I.; Spada, F., Hydrogels for atopic dermatitis and wound management: a superior drug delivery vehicle. Pharmaceutics 2018, 10 (2), 71.
Gao, X.; Yang, W.; Pang, P.; Liao, S.; Cai, Q.; Zeng, K.; Grimes, C. A., A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples. Sensors and Actuators B: Chemical 2007, 128 (1), 161-167.
Bittrich, E.; Rodenhausen, K. B.; Eichhorn, K.-J.; Hofmann, T.; Schubert, M.; Stamm, M.; Uhlmann, P., Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study. Biointerphases 2010, 5 (4), 159-167.
Tanaka, T., Collapse of gels and the critical endpoint. Physical Review Letters 1978, 40 (12), 820.
Tanaka, T.; Fillmore, D.; Sun, S.-T.; Nishio, I.; Swislow, G.; Shah, A., Phase transitions in ionic gels. Physical Review Letters 1980, 45 (20), 1636.
Tanaka, T.; Nishio, I.; Sun, S.-T.; Ueno-Nishio, S., Collapse of gels in an electric field. Science 1982, 218 (4571), 467-469.
Mamada, A.; Tanaka, T.; Kungwatchakun, D.; Irie, M., Photoinduced phase transition of gels. Macromolecules 1990, 23 (5), 1517-1519.
Suzuki, A.; Tanaka, T., Phase transition in polymer gels induced by visible light. Nature 1990, 346 (6282), 345.
Hirokawa, Y.; Tanaka, T. In Volume phase transition in a non‐ionic gel, AIP Conference Proceedings, Aip: 1984; pp 203-208.
Ganji, F.; Vasheghani, F. S.; VASHEGHANI, F. E., Theoretical description of hydrogel swelling: a review. 2010.
Varaprasad, K.; Sadiku, E. R.; Ramam, K.; Jayaramudu, J.; Reddy, G. S. M., Significances of Nanostructured Hydrogels for Valuable Applications. In Nanostructured Polymer Blends, Elsevier: 2014; pp 273-298.
Holback, H.; Yeo, Y.; Park, K., Hydrogel swelling behavior and its biomedical applications. In Biomedical Hydrogels, Elsevier: 2011; pp 3-24.
Schüwer, N.; Klok, H.-A., Tuning the pH sensitivity of poly (methacrylic acid) brushes. Langmuir 2011, 27 (8), 4789-4796.
CESARANO III, J.; Aksay, I. A.; Bleier, A., Stability of aqueous α‐Al2O3 suspensions with poly (methacrylic acid) polyelectrolyte. Journal of the American Ceramic Society 1988, 71 (4), 250-255.
Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q., Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Applied Surface Science 2006, 252 (14), 5227-5232.
Wang, W., Chelating adsorption properties of Cd (II) on the PMAA/SiO2. Process Safety and Environmental Protection 2011, 89 (2), 127-132.
Huang, L.; Yuan, S.; Lv, L.; Tan, G.; Liang, B.; Pehkonen, S., Poly (methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd (II) ions from aqueous solution. Journal of colloid and interface science 2013, 405, 171-182.
Anirudhan, T.; Rijith, S., Synthesis and characterization of carboxyl terminated poly (methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium (VI) from aqueous media. Journal of environmental radioactivity 2012, 106, 8-19.
Song, Z.; Wang, K.; Gao, C.; Wang, S.; Zhang, W., A new thermo-, pH-, and CO2-responsive homopolymer of poly [N-[2-(diethylamino) ethyl] acrylamide]: is the diethylamino group underestimated? Macromolecules 2015, 49 (1), 162-171.
Yuan, S.; Gu, J.; Zheng, Y.; Jiang, W.; Liang, B.; Pehkonen, S. O., Purification of phenol-contaminated water by adsorption with quaternized poly (dimethylaminopropyl methacrylamide)-grafted PVBC microspheres. Journal of Materials Chemistry A 2015, 3 (8), 4620-4636.
Paslay, L. C.; Abel, B. A.; Brown, T. D.; Koul, V.; Choudhary, V.; McCormick, C. L.; Morgan, S. E., Antimicrobial poly (methacrylamide) derivatives prepared via aqueous RAFT polymerization exhibit biocidal efficiency dependent upon cation structure. Biomacromolecules 2012, 13 (8), 2472-2482.
Gurbuz, N.; Demirci, S.; Yavuz, S.; Caykara, T., Synthesis of cationic N‐[3‐(dimethylamino) propyl] methacrylamide brushes on silicon wafer via surface‐initiated RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49 (2), 423-431.
Lee, J. W.; Kim, S. Y.; Kim, S. S.; Lee, Y. M.; Lee, K. H.; Kim, S. J., Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly (acrylic acid). Journal of Applied Polymer Science 1999, 73 (1), 113-120.
Das, A.; Ray, A. R., Synthesis and characterization of poly (acrylic acid‐co‐N‐[3‐(dimethylamino) propyl]‐methacrylamide) hydrogel membranes for biomedical applications. Journal of applied polymer science 2008, 108 (2), 1273-1280.
Flory, P. J., The Mechanism of Vinyl Polymerizations1. Journal of the American Chemical Society 1937, 59 (2), 241-253.
Flory, P., Principles of polymer chemistry Ithaca. NY: Cornell University 1953.
Odian, G., Principles of polymerization, 1991. New York [etc.].[41] PerkinElmer, Pyris Software online help-Scanning Kinetics theory 1988.
Sperling, L. H.; Sperling, L. H., Introduction to physical polymer science. Wiley Online Library: 2006; Vol. 78.
Shipp, D. A., Living radical polymerization: Controlling molecular size and chemical functionality in vinyl polymers. Journal of Macromolecular Science, Part C: Polymer Reviews 2005, 45 (2), 171-194.
Cowie, J. M. G.; Arrighi, V., Polymers: chemistry and physics of modern materials. CRC press: 2007.
Ernst, R. R.; Bodenhausen, G.; Wokaun, A., Principles of nuclear magnetic resonance in one and two dimensions. 1987.
ISO, B., 14887 (2000) Sample preparation—dispersing procedures for powders in liquids. International organization for standardization, Geneva, Switzerland 2000.
Schärtl, W., Light scattering from polymer solutions and nanoparticle dispersions. Springer Science & Business Media: 2007.
Bhattacharjee, S., DLS and zeta potential–What they are and what they are not? Journal of Controlled Release 2016, 235, 337-351.
Nairn, J. A., Polymer characterization. Materials Science and Engineering 2003, 5473.
Øgendal, L., Light Scattering: a brief introduction. University of Copenhagen. 2016.
Zimm, B. H., The scattering of light and the radial distribution function of high polymer solutions. The Journal of Chemical Physics 1948, 16 (12), 1093-1099.
Guinier, A. In La diffraction des rayons X aux très petits angles: application à l'étude de phénomènes ultramicroscopiques, Annales de physique, EDP Sciences: 1939; pp 161-237.
Stetefeld, J.; McKenna, S. A.; Patel, T. R., Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical reviews 2016, 8 (4), 409-427.
Hassan, P. A.; Rana, S.; Verma, G., Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 2014, 31 (1), 3-12.
Berne, B. J.; Pecora, R., Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation: 2000.
Siegert, A., On the fluctuations in signals returned by many independently moving scatterers. Radiation Laboratory, Massachusetts Institute of Technology: 1943.
Harding, S., Protein Hydrodynamics. Protein: a comprehensive treatise. JAI Press, Greenwich: 1999.
Lim, J.; Yeap, S. P.; Che, H. X.; Low, S. C., Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale research letters 2013, 8 (1), 381.
Hawe, A.; Hulse, W. L.; Jiskoot, W.; Forbes, R. T., Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharmaceutical research 2011, 28 (9), 2302-2310.
Chen, Z.; Wei, Z.; Chen, Y.; Dames, C., Anisotropic Debye model for the thermal boundary conductance. Physical Review B 2013, 87 (12), 125426.
Delgado, Á. V.; González-Caballero, F.; Hunter, R.; Koopal, L.; Lyklema, J., Measurement and interpretation of electrokinetic phenomena. Journal of colloid and interface science 2007, 309 (2), 194-224.
Miller, J. F.; Schätzel, K.; Vincent, B., The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering. Journal of colloid and interface science 1991, 143 (2), 532-554.
McNeil-Watson, F.; Tscharnuter, W.; Miller, J., A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering (PALS). Colloids and Surfaces A: Physicochemical and Engineering Aspects 1998, 140 (1-3), 53-57.
Tscharnuter, W. W., Mobility measurements by phase analysis. Applied optics 2001, 40 (24), 3995-4003.
Corbett, J. C.; McNeil-Watson, F.; Jack, R. O.; Howarth, M., Measuring surface zeta potential using phase analysis light scattering in a simple dip cell arrangement. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 396, 169-176.
Tsubokawa, N.; Shirai, Y.; Hashimoto, K., Effect of polymerization conditions on the molecular weight of polystyrene grafted onto silica in the radical graft polymerization initiated by azo or peroxyester groups introduced onto the surface. Colloid and Polymer Science 1995, 273 (11), 1049-1054.
Ober, C. K.; Hair, M. L., The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. Journal of Polymer Science Part A: Polymer Chemistry 1987, 25 (5), 1395-1407.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7231-
dc.description.abstract近年來,pH敏感型材料因為在生物科技、藥學及製藥科技等方面有廣泛的應用而逐漸受到重視。一般來說,這種材料使用了酸性或鹼性官能基團。舉弱酸性pH敏感型高分子為例子,在高pH值的環境下,它們丟出質子,形成帶負電荷的高分子鏈,進而使整體結構膨潤,甚至可以使原本嵌入在內的物質釋放出來;在低pH值的環境下,它們接受質子,形成不帶電的高分子鏈,留住原本嵌入在內的物質。換句話說,電荷密度的改變是pH敏感程度的關鍵。若可以在特定的pH值任意地調控電荷密度並促使膨潤行為產生,將會是一個值得研究的方向。透過混合不同比例的酸性和鹼性官能基團,由於它們會互相抵銷電荷,所以就可以製作出可調控電荷的表面。本研究中,利用這個概念,將含有羧基的甲基丙烯酸 (MAA) 和含有三級胺的N-(3-二甲氨基丙基)甲基丙烯醯胺 (DMAPMA) 藉由自由基聚合法合成出可調控電荷的pH敏感型高分子。使用核磁共振頻譜儀 (NMR) 及X射線光電子光譜儀 (XPS) 鑑定官能基團的比例,並使用靜態光散射 (SLS) 技術中的Debye plot計算出分子量。藉由動態光散射 (DLS) 技術,量測不同pH值下的界面電位及平均水合半徑來代表不同比例官能基團高分子的電荷密度及膨潤行為。根據實驗結果發現,隨著界面電位的數值增加,水合半徑也跟著增加,代表高分子所帶電荷控制其膨潤行為。此外,當環境pH值接近於等電位點時,會觀察到最小的水合半徑。總結來說,透過調控酸性及鹼性官能基團比例,可以製備出可調控電荷的pH敏感型高分子,並可以針對不同的應用去調控可促使膨潤行為的某特定pH值。zh_TW
dc.description.abstractIn recent years, pH-sensitive materials have drawn attentions owing to their comprehensive applications in biotechnology, medicine and pharmaceutical technology. In general, acidic or basic functional groups are employed in these materials. For instance, weak polyacids, they release protons at higher pH, forming a negatively charged polymer chain which in turn causes the structure to swell and can release cargos embedded within. At lower pH, they accept protons, leading to an uncharged polymer chain and can retain cargos. In other words, the change in charge density is the key to its pH sensitivity and it is desirable to be able to tailor the charge density at a given pH hence the swelling can be triggered at will. By mixing variable ratio of acidic and basic functional groups that cancel the charge of each other, charge-tunable surfaces can be realized. Using this concept, charge-tunable pH-sensitive polymers were synthesized by free-radical polymerization of methacrylic acid (MAA) containing carboxylic group and N-[3-(dimethylamino)propyl] methacrylamide (DMAPMA) containing tertiary amine group in this work. The ratio of functional groups in the synthesized pH-sensitive polymers were determined using Nuclear Magnetic Resonance (NMR) and X-ray Photoelectron Spectrometer (XPS), and the molecular weight was determined using Static Light Scattering (SLS) with Debye plot. The charge density and the swelling behavior of pH-sensitive polymers with different ratios of functional groups were characterized by measuring the surface zeta-potential and mean hydrodynamic radius as a function of pH using Dynamic Light Scattering (DLS). It was found that the hydrodynamic radius increased with the zeta-potential, which indicated the charge of polymer controlled its swelling behavior. Furthermore, when environmental pH was close to the iso-electric point (IEP), minimal hydrodynamic radius was observed. In conclusion, through adjusting the ratio of acidic and basic functional groups, charge-tunable pH-sensitive polymers were prepared and the pH that triggered the swelling can be tailored for desired applications.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:25Z (GMT). No. of bitstreams: 1
ntu-108-R06527009-1.pdf: 5481528 bytes, checksum: 278ae50f375744dde905253f0e83028a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iv
圖目錄 viii
表目錄 xii
第1章 緒論 1
第2章 文獻回顧 2
2.1 利用混合官能基之SAM調控材料表面電位 2
2.1.1 利用混合官能基調控金基材表面電位 3
2.1.2 利用混合官能基調控金奈米粒子表面電位 5
2.1.3 利用混合官能基調控矽基材表面電位 7
2.2 pH敏感型高分子 (pH-sensitive polymers) 9
2.2.1 簡介 9
2.2.2 膨潤行為 (Swelling behavior) 18
2.2.3 聚甲基丙烯酸 (PMAA) 20
2.2.4 聚N-(3-二甲氨基丙基)甲基丙烯醯胺 (PDMAPMA) 22
2.2.5 混合官能基之pH敏感型高分子 23
2.3 自由基聚合法 (Free radical polymerization) 24
2.3.1 簡介 24
2.3.2 起始劑種類 27
第3章 實驗與儀器介紹 28
3.1 實驗使用藥品 28
3.2 儀器簡介及原理 29
3.2.1 核磁共振頻譜儀 (Nuclear Magnetic Resonance Spectrometer, NMR Spectrometer) 29
3.2.2 X射線光電子光譜儀 (X-ray Photoelectron Spectrometer, XPS) 31
3.2.3 光散射粒徑及界面電位分析儀 (Light Scattering Particle Size and Zeta Potential Analyzer) 32
3.2.3.1 樣品製備 33
3.2.3.2 靜態光散射 (Static Light Scattering, SLS)–重量平均分子量 34
3.2.3.3 動態光散射 (Dynamic Light Scattering, DLS)–水合半徑 38
3.2.3.4 電泳光散射 (Electrophoretic Light Scattering, ELS)–界面電位 42
3.3 實驗步驟及流程 47
3.3.1 高分子合成 47
3.3.2 1H-NMR量測 50
3.3.3 13C-NMR量測 50
3.3.4 XPS量測 50
3.3.5 靜態光散射-重量平均分子量量測 51
3.3.6 動態光散射-pH對水合半徑的影響 51
3.3.7 電泳光散射-pH對界面電位的影響 52
第4章 結果與討論 53
4.1 高分子合成 53
4.1.1 酸比鹼為1:0的高分子 53
4.1.2 酸比鹼為0:1的高分子 54
4.1.3 酸比鹼為1:1的高分子 55
4.1.4 酸比鹼為1:2的高分子 56
4.1.5 酸比鹼為2:1的高分子 57
4.1.6 綜合整理 58
4.2 靜態光散射-重量平均分子量 60
4.3 1H-NMR結果之定性及定量分析 63
4.3.1 酸比鹼為1:0的高分子 63
4.3.2 酸比鹼為0:1的高分子 64
4.3.3 酸比鹼為1:1的高分子 65
4.3.4 酸比鹼為1:2的高分子 66
4.3.5 酸比鹼為2:1的高分子 67
4.4 13C-NMR結果之定性分析 69
4.4.1 酸比鹼為1:0的高分子 69
4.4.2 酸比鹼為0:1的高分子 70
4.4.3 酸比鹼為1:1的高分子 71
4.4.4 酸比鹼為1:2的高分子 72
4.4.5 酸比鹼為2:1的高分子 73
4.5 XPS結果之定量分析 74
4.6 動態光散射及電泳光散射-pH對水合半徑及界面電位的影響 75
4.6.1 不同酸鹼比例高分子的水合半徑及界面電位比較 76
4.6.2 不同酸鹼比例高分子的水合半徑及膨潤變化比較 79
4.6.3 不同酸鹼比例高分子間的界面電位及水合半徑綜合比較 83
第5章 結論 85
第6章 參考文獻 86
dc.language.isozh-TW
dc.title混合官能基之pH敏感型高分子的電荷密度及膨潤行為zh_TW
dc.titleCharge Density and Swelling Behavior of pH-sensitive Polymers with Mixed Functional Groupsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee虞邦英,王榮輝
dc.subject.keywordpH敏感型高分子,可調控電荷的,自由基聚合法,電荷密度,膨潤行為,zh_TW
dc.subject.keywordpH-sensitive polymers,charge-tunable,free radical polymerization,charge density,swelling behavior,en
dc.relation.page93
dc.identifier.doi10.6342/NTU201902870
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf5.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved