Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72302
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳右人(Iou-Zen Chen)
dc.contributor.authorChun-Leng Ooien
dc.contributor.author黃俊陵zh_TW
dc.date.accessioned2021-06-17T06:34:16Z-
dc.date.available2018-08-19
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation參考文獻
孔旭. 1987. 中國果樹栽培學. 中國農業科學院編印. 農業出版社發行. 北京,中國. P. 406.449
日本農水省. 2017. 農業生產統計.
王宇霖. 1984. 落葉果樹種類學. 農業出版社. p.150-207.
王懷慶. 2016. 溫度對東方梨花芽分化及休眠之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
行政院農業委員會. 2016. 臺灣農業統計年報.
行政院農業委員會. 2017. 農業統計年報.
沈德緒. 1994. 中國大陸梨育種的現況與展望. 興農 303:60-67.
阮素芬、倪萬丁. 1997. 氮肥使用時機對冬梨生育之影響. 提升果樹產業競爭力研討會專輯. II. 38:215-222.
阮素芬、徐錦木、陳右人. 2017. 梨產期調節與產業調適. 臺中區農業改良場特刊. 134:31-57.
阮素芬、陳右人. 2005. 促進高接梨著果技術之探討. 台中區農業改良場特刊. 梨栽培管理技術探討會專集 75:223-241.
阮素芬. 2000. 鳥梨實生後裔生育特性調查、評估與矮性植株選拔模式建立. 國立臺灣大學園藝暨景觀學系博士論文. 臺北.
林嘉興. 1986. 橫山梨與高接梨栽培管理技術. 台中區農業改良場特刊. 4:20-22.
倪正柱. 1980. 臺灣低海拔地區梨樹生長與花芽分化之研究. 興大園藝 5:38-41.
張坤城、傅靜芳、王燕惠、呂福原. 2006. 台灣野梨的身世之謎-談台灣原生梨屬植物分類. 自然保育季刊53:36-39.
張林仁、林嘉興、林信山. 1990.梨樹之營養動態. 果蔬營養與果園營養管理研討會專集 20:233-244.
張萌芬. 2015. 修剪時期對台灣低海拔‘新興’梨(Pyrus pyrifolia Nakai.)之花芽形成與休眠性之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
曹靖玟. 2010. 玉金香梨高接用花穗的花序芽發育. 國立臺灣大學生態學與演化生物學研究所碩士論文. 臺北.
莊耿彰. 1996. 東方梨的一般栽培生理(一).農業世界 149:41-44.
陳中、黃朝窗、邱仁文、黃朝卿. 1997. 豐水梨腋芽促生栽培技術改進研究.提升果樹產業競爭力研討會專集(二) pp. 187-196.
陳中. 2005. 臺灣梨樹的芽休眠生理與調控. 梨栽培管理技術研討會專集. p. 429-454.
陳右人、阮素芬. 2009. 梨樹栽培簡介. 國立臺灣大學生物資源暨農學院. 農業推廣手冊 65:1-18.
廖萬正. 1995. 梨. 臺灣農家要覽農作篇(II) 農年社. p. 169-175.
廖萬正. 2005. 梨台中1號與台中2號品種之育成.台中區農業改良場特刊.梨栽培管理之研討會專輯. 75:112-136.
歐錫坤、宋嘉瑋. 2000. 低需冷量桃樹夏季修剪. 農業試驗所技術服務 41:12-14.
蔡世宗. 2009. 採穗時期與低溫冷藏時間對臺灣新興梨穗品質的影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
鄭正勇. 1976. 葡萄芽休眠的生理研究 (一) 內在離層酸 (Free Abscisic Acid) 和激勃素 (Gibberellic Acid) 對於芽之休眠與再生長之誘發. 中國園藝22:26-33.
盧柏松. 2005. 高接梨嫁接適期之研究. 台中區農業改良場特刊. 梨栽培管理技術研討會專集. 75:175-190.
嚴新富. 1995. 重要園藝作物臺灣近緣種之研究. 國立臺灣大學園藝暨景觀學系博士論文. 臺北.
Arnon, D. I., and Stout, P. R. 1939. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant physiol. 14:371.
Arora, R., L. J. Rowland, and K. Tanino. 2003. Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38:911-921.
Banno, K., S. Hayashi, and K. Tanabe. 1986. Morphological and histological studies on flower bud differentiation and development in Japanese pear (Pyrus serotina Rehd.). J. Jpn. Soc. Hort. Sci. 55:258-265.
Bayazit, S., B. İmrak, and A. Küden. 2012. Effects of tipping applications on yield and fruit quality of some peach and nectarine. J. Agr. Faculty 17:23-30.
Bonhomme, M., R. Rageau, A. Lacointe, and M. Gendraud. 2005. Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Sci. Hort. 105: 223-240.
Bound, S. A., and C. R. Summers. 2000. The effect of pruning level and timing on fruit quality in Red ‘Fuji’ apple. In: VII International Symposium on Orchard and Plantation Systems 557 pp. 295-302.
Challice, J. S., and M. N. Westwood. 1973. Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot. J. Linn. Soc. 67:121-148.
Cheng, L., F. Ma, and D. Ranwala. 2004. Nitrogen storage and its interaction with carbohydrates of young apple trees in response to nitrogen supply. Tree physiol. 24:91-98.
Clair-Maczulajtys, D., C. Sarthou, and G. Bory. 1994. Effects of pruning on carbohydrate distribution in the trunk of sweet cherry (Prunus avium L.). Sci. Hortic. 59:61-67.
Coleman, G. D., J. M. Englert, T. H. Chen, and L. H. Fuchigami. 1993. Physiological and environmental requirements for poplar (Populus deltoides) bark storage protein degradation. Plant Physiol. 102:53-59.
Cooke, J. E., M. E. Eriksson, and O. Junttila. 2012. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 35:1707-1728.
Erez, A., and B. Lavi, 1985. Breaking bud rest of several deciduous fruit tree species in the Kenyan highlands. Acta Hort. 158:239-24.
Escobar-Gutiérrez, A. J., B. Zipperlin, F. Carbonne, A. Moing, and J. P. Gaudillere. 1998. Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Funt. Plant Bio. 25: 197-205.
Faust, M., A. Erez, L. J. Rowland, S. Y. Wang, and H. A. Norman. 1997. Bud dormancy in perennial fruit trees: Physiological basis for dormancy induction, maintenance and release. HortScience 32:623-629.
Ferree, D.C. 1979. Current experiences with summer pruning. Proc. New York Sta. Hort. Soc. 124:77-79.
Gardner, V. R., F. C. Bradford, and H. D. Hooker. 1952. “The fundamentals of fruit production” 3rd ed. McGraw-Hill, New York pp. 591-609.
González-Rossia, D., C. Reig, V. Dovis, N. Gariglio, and M. Agustí. 2008. Changes on carbohydrates and nitrogen content in the bark tissues induced by artificial chilling and its relationship with dormancy bud break in Prunus sp. Sci. hortic. 118:275-281.
Guimond, C. M., G. A. Lang, and P. K. Andrews. 1998. Timing and severity of summer pruning affects flower initiation and shoot regrowth in sweet cherry. HortScience 33:647-649.
Halaly, T., B. Zion, A. Arbel, R. Regev, M. Barak, and E. Or. 2011. Short exposure to sublethal heat shock facilitates dormancy release in grapevines. Amer. J. Enol. Viticult. 62:106-112.
Halaly, T., X. Pang, T. Batikoff, O. Crane, A. Keren, J. Venkateswari, A. Ogrodovitch, and E. Or. 2008. Similar mechanisms might be triggered by alternative external stimuli that induce dormancy release in grape buds. Planta 228:79-88.
Han, H. H., C. Coutand, H. Cochard, C. Trottier, and P. E. Lauri. 2007. Effects of shoot bending on lateral fate and hydraulics: invariant and changing traits across five apple genotypes. J. Exp. Bot. 58: 3537-3547.
Hanninen, H. and K. Tanino. 2011. Tree seasonality in a warming climate. Trends Plant Sci. 8:534-540.
Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I. S. Møller, and P. White. 2012. Functions of macronutrients. In: Marschner's Mineral Nutrition of Higher Plants 3rd. pp. 135-189.
Heide, O. M. and A. K. Prestrud. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25:109-114.
Heide, O. M.and A. Sønsteby. 2015. Simultaneous dormancy induction interferes with short day floral induction in black currant (Ribes nigrum L.). Scientia Hort. 185:228-232.
Horikoshi, H. M., Y. Sekozawa, and S. Sugaya. 2017. Inhibition of carbohydrate metabolism by thermal fluctuations during endodormancy lead to negative impacts on bud burst and incidence of floral necrosis in ‘Housui’ Japanese pear flower buds. Sci. hortic. 224:324-331.
Hossain, A., F. Mizutani, J. M. Onguso, A. R. El-Shereif, and K. L. Rutto. 2006. Effect of summer pruning on shoot growth and fruit quality in peach trees trained as slender spindle bush type. Mem. Faculty Agr. Ehime University 51:9-13.
Ikinci, A. 2014. Influence of pre-and postharvest summer pruning on the growth, yield, fruit quality, and carbohydrate content of early season peach cultivars. Sci. World J. p. 1-8.
Ito, A., D. Sakamoto, and T. Moriguchi. 2012. Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci. Hort. 144:187-194.
Ito, A., H. Hayama, and Y. Kashimura. 2003. Sugar metabolism in spur bud during flower bud formation: A comparison between exposed and shaded buds of Japanese pear [Pyrus pyrifolia (Burm.) Nak.] 'Kosui'. J. Jpn. Soc. Hort. Sci. 72:253-261.
Ito, A., H. Yoshioka, H. Hayama, and Y. Kashimura. 2001. Effect of shoot bending on endogenous auxin and cytokinin levels in buds, and its possible relationship to flower bud formation in Japanese pear. Acta Hortic. 653:57-62.
Ito, A., T. Sakaue, O. Fujimaru, A. Iwatani, T. Ikeda, D. Sakamoto, T. Sugiura, and T. Moriguchi. 2018. Comparative phenology of dormant Japanese pear (Pyrus pyrifolia) flower buds: a possible cause of ‘flowering disorder’. Tree Physiol. 38:825-839.
Kanayama, Y. 2009. Physiological roles of polyols in horticultural crops. J. Jpn. Soc. Hort. Sci. 78:158-168.
Karimi, F., M. Igata, T. Baba, S. Noma, D. Mizuta, J. G. Kim, and T. Ban. 2017. Summer pruning differentiates vegetative buds to flower buds in the Rabbiteye blueberry (Vaccinium virgatum Ait.). Hortic. J. 86:300-304.
Koornneef, M., L. Bentsink, and H. Hilhorst. 2002. Seed dormancy and germination. Curr. Opin. plant boil. 5:33-36.
Kuroda, H., and S. Sagisaka. 1993. Ultrastructural changes in cortical cells of apple (Malus pumila Mill.) associated with cold hardiness. Plant cell physiol. 34:357-365.
Lang, G.A. 1987. Dormancy: A new universal terminology. HortScience 22:817-820.
Lang, G.A., J.D. Early, G.C. Martin, and R.L. Darnell. 1987. Endodormancy, paradormancy, and ecodormancy: physiological terminology and classification for dormancy research. HortScience. 22:371–377.
Lavee, S. 1973. Dormancy and bud break in warm climates; Considerations of growth regulator involvement. Acta Hort. 34:225-234.
Li, K. T., A. N. Lakso, R. Piccioni, and T. Robinson. 2003. Summer pruning reduces whole-canopy carbon fixation and transpiration in apple trees. J. Hortic. Science Biotech. 78:749-754.
Li, Z., G. L. Reighard, A. G. Abbott, and D. G. Bielenberg. 2009. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica L. Batsch] have distinct seasonal and photoperiodic expression patterns. J. Exp. Bot. 60:3521-3530.
Loescher, W. H., and J. D. Everard. 1996. Sugar alcohol metabolism in sinks and sources. New York: Marcel Dekker. pp. 185-207.
Loescher, W. H., T. McCamant, and J.D. Keller. 1990. Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience 25:274-281.
Lord, W. J., D. W. Greene, W. S. Bramlage, and M. Drake. 1979. Inducing flowering of apple trees and increasing fruit quality by summer pruning. Compact Fruit Tree 12:23-29.
Malagi, G., M. R. Sachet, I. Citadin, F. G. Herter, M. Bonhomme, J. L. Regnard, and J. M. Legave. 2015. The comparison of dormancy dynamics in apple trees grown under temperate and mild Winter climates imposes a renewal of classical approaches. Trees 29:1365-1380.
Marini, R. P. 1986. Defoliation, flower bud cold hardiness, and bloom date of peach as influenced by three pruning treatments. J. Amer. Soc. Hort. Sci. 111:391-394.
Marini, R. P. and J. A. Burden, 1987. Summer pruning of apple and peach trees. Hortic. Reviews 9:351-375.
McCauley, A., C.Jones, and J. Jacobsen. 2009. Plant nutrient functions and deficiency and toxicity symptoms. Nutr. Man. 9:1-16
Mika, A. 1986. Physiological responses of fruit trees to pruning. Hortic. Rev. 8:337-378.
Morgan, D. C., C. J. Stanley, R. Volz, and I. J. Warrington, 1984. Summer pruning of Gala apple: The relationships between pruning time, radiation penetration, and fruit quality. J. Amer. Soc. Hort. Sci. 109:637-642.
Mutasa-Göttgens, E., and P. Hedden. 2009. Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 60:1979-1989.
Myers, S.C. 1993. Preharvest watersprout removal influences canopy light relations, fruit quality, and flower bud formation of Redskin' peach trees. J. Amer. Soc. Hortic. Science 118:442-445.
Myers, S.C., and D.C. Ferree. 1983. Influence of summer pruning and tree orientation on net photosynthesis, transpiration, shoot growth, and dry-weight distribution in young apple trees. J. Amer. Soc. Hort. Sci. 109:637-642.
Nakasu, B. H., F. G. Herter, D. L. Leite, M. C. B. Raseira. 1994. Pear flower bud abortion in southern Brazil. Acta Hort. 395:185-192.
Nee, C. C., C. H. Tsai, and D. D. Anstine. 2001. Asian pear germplasm-future trends and current research in the industry. Acta. Hort. 427:171-175.
Noar, A., M. Flasishman, R. Stern, A. Moshe, and A. Eraz. 2003. Temperature effects on dormancy completion of vegetative bud in apple. J. Amer. Soc. Hort. Sci. 128:636-641.
Pandey, M., A. K. Srivastava, S. F. D'Souza, and S. Penna. 2013. Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L.). PLoS ONE 8:1-12.
Peng, S. A., and S. Iwahori. 1994a. Morphological and cytological changes in apical meristem during flower bud differentiation of Japanese pear, Pyrus pyrifolia Nakai. J. Jpn. Soc. Hort. Sci. 63:313-321.
Peng, S. A., and S. Iwahori. 1994b. Ultrastructural changes in apical meristem during flower bud differentiation of Japanese pear, Pyrus pyrifolia Nakai. J. Jpn. Soc. Hort. Sci. 63:323-333.
Raese, J. T., S. R. Drake, and E. A. Curry. 2007. Nitrogen fertilizer influences fruit quality, soil nutrients and cover crops, leaf color and nitrogen content, biennial bearing and cold hardiness of ‘Golden Delicious’. J. Plant Nutrition 30:1585-1604.
Rakngan, J., H. Gemma, and S. Iwahori. 1995. Flower bud formation in Japanese pear trees under adverse conditions and effects of some growth regulators. Jpn. J. Agr. 39:1-6.
Rowland, L. J., and R. Arora, 1997. Proteins related to endodormancy (rest) in woody perennials. Plant Science, 126:119-144.
Ruck, H. C. 1975. Deciduous fruit tree cultivars for tropical and sub-tropical regions. Hortic. Rev. pp. 99.
Sabbatini, P., K. Wierba, L. Clearwater, and G. S. Howell. 2015. Impact of training system and pruning severity on yield, fruit composition, and vegetative growth of ‘Niagara’ grapevines in Michigan. Int. J. Fruit Science, 15:237-250.
Samish, R.M. 1954. Dormancy in woody plants. Annu. Rev. Plant Physiol. 5:183-204.
Saure, M.C. 1992. Interference of pruning with endogenous growth control. Acta. Hort. 322:241-247.
Schmitz, J. D., F. G. Herter, J. L. Regnard, G. B. Leite, M. Bonhomme, H. Cochard, and P. É. Lauri. 2015. Is acrotonic budburst pattern in spring a typical behavior of the low-chilling apple cultivar ‘Eva’ in mild winter conditions? An approach combining ex planta single-node cutting test and in planta bud water content during dormancy. Sci. Hort. 188:84-88.
Seo, H. J., Y. O. Jin, C. L. Lee, S. F. Roan, and I. Z. Chen. 2015. Effect of altitude on flower bud differentiation and necrosis in ‘Shinko’ pears in subtropical climates. Kor. J. Hort. Sci. Technol. 33:18-23.
Stiles, W.C. 1980. Pruning, growth regulator, and nutrition studies with apples. Maine Sta. Pomo. Soc. Ann. Rep. 1980:25-34.
Tanino, K.K., L. Kalcsits, S. Silim, E. Kendall, and G. R. Gray. 2010. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol. Boil. 73:49-65.
Taylor, B.H., 1982 The influence of summer pruning and fruit cropping on growth, carbohydrate and nutrient element status of apple trees Ph.D. Thesis, Ohio Sta. University.
Tsujikawa, T., T. Ichii, T. Nakanishi, T. Ozaki, and Y. Kawai. 1990. In vitro flowering of Japanese pear and the effect of GA4+7. Sci. Hort. 41:233-245.
Tukey, H. B. 1964. Dwarfed fruit tree. Macmillan, New York.
Yamamoto, R. R., A. Katsumi-Horigane, M. Yoshida, Y. Sekozawa, S. Sugaya, and H. Gemma, 2010. “Floral primordia necrosis” incidence in mixed buds of Japanese pear (Pyrus pyrifolia (Burm.) Nakai var. culta) ‘Housui’ grown under mild winter conditions and the possible relation with water dynamics. J. Jpn. Soc. for Hort. Sci. 79:246-257.
Yamane, H., T. Ooka, H. Jotatsu, Y. Hosaka, R. Sasaki, and R. Tao. 2011. Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J. Exp. Bot. 62:3481-3488
Yemm, E. W., and Folkes, B. F. 1958. The metabolism of amino acids and proteins in plants. Ann. Rev. Plant Physiol. 9:245-280.
Zheng, C., T. Halaly, A. K. Acheampong, Y. Takebayashi, Y. Jikumaru, Y. Kamiya, and E. Or. 2015. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. J. Exp. Bot. 66:1527-1542.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72302-
dc.description.abstract摘要
臺灣寄接梨所使用之溫帶梨品種逐漸多元,目前至少已有5種品種。本研究共
分為三部分。第一部分調查與檢定目前進口之主要梨穗品種,此外尚有高海拔所生產之國產溫帶梨。第二部分檢討夏季修剪對低海拔梨園中,當年高接‘新興’梨所長出枝梢之生長與花芽分化狀況。第三部分以正向逐步迴歸分析影響花芽比例之因子。第一部分試驗收集4種寄接梨之進口或國產品種,以及2種生產於臺灣高海拔山區,一般認為可能有潛力之溫帶梨品種。調查其外觀性狀,以芽角度、皮孔及芽形狀,可有效區分這六個品種。同時亦檢查其花芽分化狀況,但由於調查之枝條已事先選別過,花芽比例差異不顯著。第二部分之試驗於新埔地區‘新興’梨園進行,探討生長季修剪對‘新興’梨枝條生長,花芽發育與休眠性之影響,並於採收後以冷藏處理探究修剪處理對芽體生理休眠之影響。試驗結果顯示, 4月修剪者具有最佳之枝條長度、枝條直徑及節間長,5月以後修剪之枝條生長明顯受限。所有枝條均於7月達生長停滯、枝條長度不再增加。修剪次數對枝條生長量無顯著影響,推測可能原因為枝條提早成熟並停止,故無法顯現。修剪後之側芽萌芽率隨修剪時機越晚而有下降之趨勢,推測5月以後修剪之枝條除了受環境溫度所影響,亦受到枝條本身抑制物質所限制。對照組芽體於7月可肉眼觀察到花芽形成,由於具較長之生長季高溫期,其芽體壞死率最為嚴重。生長季修剪會改善花芽褐化率,亦同時增加健康花芽率。各修剪處理之花芽褐化情形皆有改善,以4月修剪有最佳之花芽形成率,且花芽壞死率降低幅度最大。5月以後修剪,花芽形成率較低,可能因為生長季時間較短花芽發育時間不足所致。未來可調整採收時間以改善花芽比例。枝條內容物分析結果顯示,巨量元素中除鉀以外,各修剪處理間無顯著差異。枝條採收後,以單芽插方式探討冷藏處理時間對各修剪處理之芽體萌發率之影響。結果顯示,冷藏1星期及冷藏2星期處理之枝條芽體萌發不一致,可能為低溫需求量不足所致。冷藏3星期之芽體均有萌發情況,以冷藏 4星期為最佳冷藏處理。其中以5月修剪及4+5月修剪之單芽插萌發率為最佳,均達50%以上。單芽插萌發率受冷藏時間所影響,冷藏時間越長,單芽插萌芽率具逐漸增加之趨勢。未來可針對冷藏時間做調整,以改善冷藏後枝條萌發情形。第三部分是探究各因子對枝條花芽比例之貢獻度,並建立相關預測方程式,以供未來枝條營養元素與花芽分化相關之研究做參考。巨量元素中以鉀含量與花芽比例關係密切,但因果關係仍需進一步闡明。生長季修剪可縮短枝條生長季之高溫期,進而改善芽體壞死之問題,使低海拔地區可進行梨穗之生產,本研究可作為未來低海拔地區生產梨穗之依據。
zh_TW
dc.description.abstractAbstract
Cultivars of pear are gradually diversified, at least five cultivar of oriental pear are currently available in top-grafting pear industry. This study was divided into three parts. The first part was to verify the currently-main-import pear cultivars, and pears which was produced at high altitudes area. The second part was to study the effects of growing-season-pruning on shoots growth and flower differentiation of ‘Shinko’ pear in lowland area. In the third part, the factors affecting the percentage of flower buds were analyzed by forward stepwise analysis. In the first part, 4 kinds of pear cultivars were collected from foreign contries and domestic varieties.2 kinds of cultivars were collected from high altitude area in Taiwan which had more potential in Top-grafting pear industry. Bud characteristics such as bud angle, lenticels and shape of bud were used to distinguish the 6 cultivars and establish identify key of pear cultivars. Result of flower bud differentiation status observation showed that the percentage of flower buds was not significant different between cultivars. It may cause from that the pear scions had been previously selected. The second part was conducted in Xinpu township for summer pruning to investigate the effects of growing-season-pruning on shoots growth, flower bud development, dormancy of lateral bud, and the impact of pruning on the endodormancy of buds after harvesting. The results showed that, shoots pruned in April had best shoot length, shoot diameter, and the length of internode. After May, the growing of shoots was significantly limited. All shoots had growth cessation in July. The frequency of pruning has no significant effect to shoots growth. It is presumed that the reason may be the shoot matures early then stops, so it cannot be expressed. After pruning, percentage of lateral bud burst decreased along with delay of pruning. It speculated that the growth of shoots were not only affected by the high temperature in environment, but also restricted by the inhibitory substances of the shoots itselves. Flower bud formation could be observed visually in July, and the percentage of bud necrosis was the most serious due to a longer growth period in relative high temperature. Growing-season-pruning would reduce the necrosis of buds and also improved the proportion of flower buds in shoots. The flower bud drop rate of each pruning treatment was reduced. Pruned in April had best flower bud formation, and decreased the most percentage of bud drop. Pruning after May, the percentage of flower bud formation was low, which might be due to short growing time. Thus, to improve the flower bud formation, harvest time should be adjusted. Macronutrient of shoots showed that there were no significant difference among the pruning treatments except for potassium content in shoots. After the pear scions were harvested, the effect of storage treatment on the percentage of bud break in each pruning treatment was investigated by single-bud-cutting. The results showed that, bud break were inconsistent between one-week storage treatment and two-week storage treatment, which might be due to chilling requirement insufficient. In three-week storage treatment, bud break was observed in all of the pruning treatment. And the best storage treatment was performed in storage treatment for 4 weeks. Among them, the percentage of bud break for shoots pruned in May and pruned in April+May was the most, and all above 50%. The percentage of bud break was affected by the storage time. The longer storage time the higher percentage of bud break. In the future, storage time can be adjust to improve the percentage of bud break. In the third part, forward stepwise analysis was used to explore the contribution of each factor to the percentage of flower buds, and the relevant prediction equation was established for the reference of future research on the relationship between shoot nutrient elements and flower bud differentiation. C/N ratio and carbohydrate were the main factors in the two prediction equations, but the C/N ratio is the calculated value, so the equation which without the factor of C/N ratio is recommended. The content of potassium is closely related to the proportion of flower buds, but the causality needs to further elucidation. In order to solve the problem of pear scions, it is necessary for Taiwan to produce pear scions. Growing-season-pruning can shorten the high temperature period of the growing season, and reduced the necrosis of buds, so that the production of pear scions can be carried out in low altitude areas. This study can be used as the basis for the production of pear scions in low altitude areas in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:34:16Z (GMT). No. of bitstreams: 1
ntu-107-R05628132-1.pdf: 1320002 bytes, checksum: 720dece779c054f8756d78e0574fb5b5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
口試委員會審定書 i
致謝 ii
摘要 iii
表目錄 ix
圖目錄 x
第一章 前言 1
第二章 文獻回顧 3
第一節 臺灣梨簡介與產業發展 3
第二節 梨花芽分化與發育 5
第三節 修剪對果樹生育之影響 7
第四節 落葉果樹之芽體休眠及探測方式 8
第五節 植物內容物含量變化 10
(一)碳水化合物 11
(二)巨量元素變化 12
第三章 材料與方法 14
第一節 東方梨枝條與芽體形態觀察 14
第二節 生長季修剪對新埔地區‘新興’枝條及花芽分化之影響 14
第三節 生長季修剪對新埔地區‘新興’梨內容物含量之影響 15
第四節 單芽插探討生長季修剪對‘新興’梨芽體休眠性之影響 16
第四章 結果與討論 18
第一節 東方梨枝條與芽體形態觀察 18
第二節 生長季修剪對新埔地區‘新興’枝條及花芽分化之影響 19
第三節 生長季修剪對新埔地區‘新興’梨內容物含量之影響 25
第四節 單芽插探討生長季修剪對‘新興’梨芽體休眠性之影響 26
第五節 枝條內容物含量與枝條花芽比例之關係 27
第五章 結論 30
參考文獻 55
附錄一、氮含量測定-全氮(凱氏氮)分析(Kjedahl) 63
附錄二、磷含量測定-鉬藍法 64
附錄三、鉀、鈣及鎂含量分析 65
附錄四、碳水化合物含量測定-Anthrone 法 67
附錄五、栽培地區之日均溫及最高溫 68
dc.language.isozh-TW
dc.subject生長季修剪zh_TW
dc.subject寄接梨zh_TW
dc.subject花芽形成zh_TW
dc.subject花芽壞死zh_TW
dc.subject休眠zh_TW
dc.subjectdormancyen
dc.subjecttop-grafting pearen
dc.subjectgrowing-season-pruningen
dc.subjectbud necrosisen
dc.subjectflower bud formationen
dc.title生長季修剪對低海拔‘新興’梨(Pyrus pyrifolia Nakai.)
枝條生長、花芽形成及休眠之影響
zh_TW
dc.titleEffects of Growing-Season-Pruning on Shoots Growth, Flower Formation and Dormancy of ‘Shinko’ Pear
(Pyrus pyrifolia Nakai.) in Lowland Area
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee阮素芬(Su-Feng Roan),林書妍(Shu-Yen Lin)
dc.subject.keyword生長季修剪,寄接梨,花芽形成,花芽壞死,休眠,zh_TW
dc.subject.keywordgrowing-season-pruning,top-grafting pear,flower bud formation,bud necrosis,dormancy,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201803579
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
1.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved