Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/722
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯(Louis Ge)
dc.contributor.authorZih-Yun Wangen
dc.contributor.author王姿勻zh_TW
dc.date.accessioned2021-05-11T05:00:07Z-
dc.date.available2020-08-05
dc.date.available2021-05-11T05:00:07Z-
dc.date.copyright2019-08-05
dc.date.issued2019
dc.date.submitted2019-07-31
dc.identifier.citation[1] Bowles, J.E. (1996). Foundation analysis and design, 5th Edition, McGraw-Hill Book Company, New York, USA.
[2] Bryson, L.S., and Zapata-Medina, D.G. (2012). Method of estimation system stiffness for excavation support walls. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, pp. 1104-1115.
[3] Clough, G.W., Smith, E.M., and Sweeney, B.P. (1989). Movement control of excavation support systems by iterative design. Current Principles and Practices, Foundation Engineering Congress, Vol. 2, pp. 869-884.
[4] Finno, R.J., Blackburn, J.T., and Roboski, J.F. (2007). Three dimensional effects for supported excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 1, pp. 30-36.
[5] Hsieh, H.S. and Lu, F.C. (1999). A note on the analysis and design of diaphragm wall with buttresses. Sino-Geotechnics, Vol. 76, pp. 39-50 (in Chinese).
[6] Hsieh, H.S., Hsu, W.T., and Chou, C.J. (2015). Incorporating three-dimensional effect in the design of a small excavation in soft clay. International Conference on Soft Ground Engineering, Singapore, pp. 669-677.
[7] Hsieh, H.S. and Huang Y.H., Hsu, W.T. and Ge, L. (2017). On the system stiffness of deep excavation in soft clay. Journal of GeoEngineering, Vol. 12, No. 1, pp. 21-34.
[8] Hsiung, B.B. (2009). A case study on the behavior of a deep excavation in sand. Computers and Geotechnics, Vol. 36, pp. 665-675.
[9] Hsieh, P.G., Ou, C.Y., Liu, H.T. (2008). Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay. Canadian Geotechnical Journal, Vol. 45, pp. 788-799.
[10] Khoiri, M. and Ou, C.Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. Computers and Geotechnics, Vol. 47, pp.57-67.
[11] Likitlersuang, S., Surarak, C., Wanatowski, D., Oh, E., and Balasubramaniam, A. (2013). Finite element analysis of a deep excavation: a case study from the Bangkok MRT. Soil and Foundations, Vol. 53, No. 5, pp. 756-773.
[12] Lim, A., Ou, C.Y., and Hsieh, P.G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, TGS, Vol. 5, No. 1, pp. 9-20.
[13] Long, M. (2001). Database for retaining wall and ground movements due to deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 3, pp. 203-224.
[14] Moormann, C. (2004). Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database. Journal of the Japanese Geotechnical Society, Vol. 44, No. 1, pp. 97-98.
[15] Ou, C.Y., Chiou, D.C., and Wu, T.S. (1996). Three-dimensional finite element analysis of deep excavations. Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 5, pp. 337-345.
[16] Ou, C.Y. (2006). Deep Excavation; Theory and Practice, Taylor and Francis, Netherland.
[17] PLAXIS 3D (2017) Computer software. PLAXIS, Delft.
[18] Terzaghi, K. (1943). Theoretical Soil Mechanics, John Wiley & Sons, New York.
[19] Ukritchon, B., Whittle, A.J. and Sloan, S.W. (2003). Undrained stability of braced excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 8, pp. 738-755.
[20] Wu, S.H., Ching, J.Y., and Ou, C.Y. (2013). Predicting wall displacements for excavations with cross walls in soft clay. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 6, pp. 914-927.
[21] 內政部營建署 (2011),「混凝土結構設計規範」,民國一百年,台北。
[22] 內政部營建署 (2003),「大眾捷運系統兩側禁建限建辦法」,民國九十二年,台北。
[23] 張智博 (2016)。深開挖基地三維幾何配置於連續壁壁體變位之影響。國立臺灣大學土木工程學研究所碩士論文,台北市。
[24] 吳軒蘋 (2017)。考慮扶壁效應於開挖行為之簡化分析。國立臺灣大學土木工程學研究所碩士論文,台北市。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/722-
dc.description.abstract地中壁工法為常用於目前深開挖工程的輔助措施,以防止連續壁產生過多之側向變形量並減少對相鄰建築物的影響。Clough等人於1989年提出設計曲線,其考慮了土壤及擋土措施的效應,可初估開挖所造成的牆體位移。然而,由地中壁引起之三向度效應對於連續壁的抑制非常明顯。所謂的三向度效應為考慮輔助措施的存在以及開挖基地的大小。首先,針對三個已完成的開挖案例進行PLAXIS 3D分析,以驗證地中壁的存在確實對於抑制連續壁的側向位移有顯著的影響,以及發現其現地結果遠小於Clough曲線的預測值。
由案例探討可知Clough曲線已經不敷使用,若不進一步優化Clough曲線,將使得設計過於保守。因此,為了更準確地預測連續壁的側向位移,本研究在原始Clough的架構下結合地中壁的影響,透過系統勁度和基地底面隆起安全係數的調整來量化其地中壁效應;優化曲線後並延伸以涵蓋高系統勁度和高基地底面隆起安全係數,可用於估算地中壁影響下之牆體位移;另外,也蒐集其他案例來檢討其準確性及合理性。另外,進行三維數值分析進一步了解地中壁的影響,經過數值模擬發現地中壁間距為決定壁體位移的重要因素。根據數值結果,可得出15米的地中壁間距似乎能發揮其最佳之效益。
根據參數研究的結果,歸納出以下結論:一、修正後的Clough曲線可合理預估開挖所引致之壁體位移,並滿足設計所需。二、若要發揮地中壁之最大效益,15米的地中壁間距為最佳之設計值。
zh_TW
dc.description.abstractCross walls are usually adopted to prevent excessive deformation of diaphragm wall and to minimize damage to the adjacent buildings. Three case histories were selected to demonstrate the presence of cross wall does have a significant effect on minimizing wall displacement. According to the validation of case histories, it is noted that the three-dimensional effect induced by cross wall is pronounced for the excavation in soft clay, which results in a pretty small field observation that is far below the results predicted by the design chart proposed by Clough et al.
In order to have a better prediction on the wall displacement, this study incorporates the effect of cross wall within Clough’s chart by adjusting the system stiffness and factor of safety against basal heave. In addition, Clough’s original design curves are extrapolated to cover the uncharted area of both high system stiffness and high factor of safety against basal heave.
The strengthening effect of cross wall leads to increase of system stiffness and factor of safety against basal heave that can be quantified by simplified approaches, which are incorporated within Clough’s scheme. With the revised scheme, the wall displacement under the influence of cross walls can be reasonably estimated, if the condition of soil, retaining wall and layout of project site had all been known. Other case histories are also studied to validate the revised scheme.
Three-dimensional numerical analyses are also carried out to further calibrate the effect of cross walls. It is found that the spacing of cross walls is the most important factor that governs the magnitude of wall displacement. A typical spacing of 15 m between cross walls appears to be the optimal layout of cross walls if a low value of wall displacement is desired.
en
dc.description.provenanceMade available in DSpace on 2021-05-11T05:00:07Z (GMT). No. of bitstreams: 1
ntu-108-R06521107-1.pdf: 7908047 bytes, checksum: 39562e26bf3c180a4ae427009b9b5a9b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
ABSTRACT ii
摘要 iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
LIST OF SYMBOLS xiii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 2
1.3 Research Outline 3
Chapter 2 Literature Review 6
2.1 System Stiffness 7
2.2 Plane Strain Ratio 9
2.3 Relative Stiffness Ratio 12
2.4 Diaphragm Wall Design with Auxiliary Measures 14
2.4.1 Equivalent soil parameters in cohesive soil 14
2.4.2 Equivalent soil parameters in non-cohesive soil 16
2.4.3 Characteristics of cross walls 17
2.5 The Finite Element Program 18
Chapter 3 Case Histories 32
3.1 Case A 33
3.1.1 Project overview 33
3.1.2 PLAXIS simulation 34
3.1.3 Comparison of results 37
3.2 Case B 38
3.2.1 Project overview 38
3.2.2 PLAXIS simulation 39
3.2.3 Comparison of the results 40
3.3 Case C 42
3.3.1 Project overview 42
3.3.2 PLAXIS simulation 44
3.3.3 Comparison of results 45
3.4 Summary 46
Chapter 4 Revision of the Clough’s Curves 67
4.1 Revised scheme 68
4.1.1 Use of the original scheme 68
4.1.2 Extension of the design curves 69
4.1.3 Revision of the system stiffness 72
4.1.4 Revision of the factor of safety against basal heave 73
4.2 Review of the previous case histories 75
4.2.1 Review of Case A 75
4.2.2 Review of Case B 76
4.2.3 Review of Case C 76
4.2.4 Summary 77
Chapter 5 Effects of Cross Walls on Wall Displacement 87
5.1 Spacing of Cross Walls 88
5.2 Refined Analysis 89
5.3 Numerical Results and Comparisons 91
5.3.1 Results of numerical analyses 91
5.3.2 Comparing the numerical results with predictions by the regression equation 94
Chapter 6 Application of the Results of Parametric Studies 109
6.1 Application of the Regression Equation 109
6.1.1 Case Z1 109
6.1.2 Case Z2 110
6.1.3 Case Z3 112
6.1.4 Case Z4 114
6.2 Spacing Effect of Cross Walls 116
6.2.1 Case A 116
6.2.2 Case B 116
6.2.3 Case C 117
6.2.4 Case Z1 117
6.2.5 Case Z2 117
6.2.6 Case Z3 118
6.2.7 Case Z4 118
6.3 Discussions 119
6.3.1 Applicability of the regression equation 119
6.3.2 Effect of cross wall spacing 120
Chapter 7 Conclusions and Recommendations 135
7.1 Conclusions 135
7.2 Recommendations for Future Work 136
References 138
APPENDIX A A-1
APPENDIX B B-1
APPENDIX C C-1
dc.language.isoen
dc.subject三向度效應zh_TW
dc.subject深開挖zh_TW
dc.subject系統勁度zh_TW
dc.subject地中壁zh_TW
dc.subjectcross wallen
dc.subjectsystem stiffnessen
dc.subjectthree-dimensional effecten
dc.subjectdeep excavationen
dc.title地中壁於黏土層中深開挖對系統勁度及壁體變位之影響zh_TW
dc.titleEffect of Cross Walls on System Stiffness and Wall Displacement for Excavations in Soft Clayen
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor謝旭昇(Hsii-Sheng Hsieh)
dc.contributor.oralexamcommittee楊國鑫(Kuo-Hsin Yang),熊彬成(Bin-Chen Hsiung)
dc.subject.keyword深開挖,系統勁度,地中壁,三向度效應,zh_TW
dc.subject.keyworddeep excavation,system stiffness,cross wall,three-dimensional effect,en
dc.relation.page152
dc.identifier.doi10.6342/NTU201900743
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf7.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved