請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72299
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅筱鳳 | |
dc.contributor.author | Hao Chen | en |
dc.contributor.author | 陳昊 | zh_TW |
dc.date.accessioned | 2021-06-17T06:34:05Z | - |
dc.date.available | 2021-08-18 | |
dc.date.copyright | 2018-08-18 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | 王毓華、黃晉興、余志儒. 2009. 洋香瓜栽培管理. 興大農業71:16-23.
陳兆倫. 2017. 水耕網紋洋香瓜養液之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 臺灣. 陳俊位、戴振洋. 1997. 夏季蔬菜常見之病害. 臺中區農業專訊 19:11-18 黃瑞彰、黃圓滿、彭瑞菊、黃秀雯、陳昇寬、鄭安秀. 2016. 設施洋香瓜建康管理技術. 行政院農業委員會臺南區農業改良場. 臺中. 臺灣. 楊証閔. 2013. 根溫處理對甜瓜與番茄生長之影響. 國立中興大學園藝學系碩士學位論文. 臺中. 臺灣. 蔡金川、林俊義、沈再發、蕭吉雄. ed. 設施園藝學. 臺中, 臺灣: 行政院農業委員會農業試驗所, 2004. 沈再發、許淼淼. 1990. 溫室洋香瓜水耕之養分吸收研究. 中華農業研究 39:55-64. 沈再發. 2009. 培養液組成之理論與實際(中). 農業試驗所技術服務專刊 20:37-41 李勝利. 2014. 水冷苗床對番茄幼苗生理的影響. 園藝學報 41:1461. 蔡尚光. 1995. 設施洋香瓜與胡瓜的高品質生產. 淑馨出版社. 臺北.臺灣. 蔡尚光. 2012. 現代田園與養液栽培. 淑馨出版社. 臺北.臺灣. 神谷圓一. 1984. ア ールスメロンの地床栽培. 東海種苗園. 靜岡. 日本. 益田忠雄、小寺正史. 1953. メロンの栽培に関する研究-2. 岡山大学農学部学術報告 2:38-43. Ahn, S. J., Y. J. Im, G. C. Chung, K. Y. Seong, and B. H. Cho. 2000. Sensitivity of plasma membrane H+-ATPase of cucumber root system in response to low root temperature. Plant Cell Rpt. 19: 831-835. Argyris, J. M., A. Díaz, V. Ruggieri, M. Fernández, T. Jahrmann, Y. Gibon, and J. Garcia-Mas. 2017. QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Front. Plant Sci. 8: 1679. Asao, T., Md. Asaduzzaman, M. F. Mondal, M. Tokura, F. Adachi, M. Ueno, M. Kawaguchi, S. Yano and T. Ban. 2013. Impact of reduced potassium nitrate concentrations in nutrient solution on the growth, yield and fruit quality of melon in hydroponics. Sci. Hortic. 164: 221-231. Beaulieu, J. C., J. M. Lea, G. Eggleston, and Z. Peralta-Inga. 2003. Sugar and organic acid variations in commercial cantaloupes and their inbred parents. J. Am. Soc. Horticult. Sci. 128: 531–536. Bugbee, B. 2003. Nutrient management in recirculating hydroponic culture. In “South Pacific Soilless Culture Conference-SPSCC 648”. 99-112. Chaves, M. M., M. M. Flexas, and M. M. Pinheiro. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551-560. Clarkson, D.T., M. Carvajal, T. Henzler, R.N. Waterhouse, A.J. Smyth, D.T. Cooke, and E. Steudle. 2000. Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J. Expt. Bot. 51: 61-70. Du, Y.C. and S. Tachibana. 1994. Effect of supraoptimal root temperature on the growth, root respiration and sugar content of cucumber plants. Scientia Hort. 58: 289-301. Farhoudi, R., S. Saeedipour and D. Mohammadreza. 2011. The effect of NaCl seed priming on salt tolerance, antioxidant enzyme activity, proline and carbohydrate accumulation of muskmelon (Cucumis melo L.) under saline condition. Afr. J. Agr. Res. 6: 1363-1370. Fernández Trujillo, J.P., B. Picó, J. Garcia Mas, J.M. Álvarez, and A.J. Monforte. 2011. Breeding for fruit quality in melon. 261-278. In: A. J. Matthew and Penelope J. B. (eds.). Breeding for fruit quality. John Wiley & Sons, N.Y., U.S. Gosselin, A. and M. J. Trudel. 1985. Influence of root-zone temperature on growth, development and yield of cucumber plants cv. Toska. Plant Soil 85: 327-336. Huang, C., L. Zong, M. Buonanno, X. Xue, T. Wang, and A. Tedeschi. 2012. Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. Eur. J. Agron. 43: 68-76. Husain, M. C., I. M. Khir, Z. Othman, A. S. S. Sulaiman, and A. H. M. Yi. 2015. Effect of rhizosphere cooling on tomato crop performance under controlled environment structure. J. Trop. Agr. Food Sci. 44: 19-27. Lee, S., A. Singh, G. Chung, S. Ahn, E. Noh, and E. Steudle. 2004. Exposure of roots of cucumber (Cucumis sativus L.) to low temperature severely reduces root pressure, hydraulic conductivity and active transport of nutrients. Physiol. Plant. 120: 413-420. Lee, S., G. Chung, and E. Steudle. 2005. Gating of aquaporins by low temperature in roots of chilling-sensitive cucumber and chilling-tolerant figleaf gourd. J. Expt. Bot. 56: 985-995. Maathuis, F. J. M. and F. Maathuis. 2009. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12: 250-258. Moon, J. H., Boo, H. O., & Jang, I. O. 2007. Effect of root-zone temperature on water relations and hormone contents in cucumber. Hortic. Environ. Biote. 48: 257-264. Moon, J. H., Y. Kang, and H. D. Suh. 2006. Effect of root-zone cooling on the growth and yield of cucumber at supraoptimal air temperature. Acta Hort. 761: 271-274. Neocleous, D. and D. Savvas. 2016. NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake. Agr. Water Manage. 165: 22-32. Neocleous, D., G. Ntatsi and D. Savvas. 2017. Physiological, nutritional and growth responses of melon (Cucumis melo L.) to a gradual salinity built-up in recirculating nutrient solution, J. Plant Nutr. 40: 2168-2180 Noda K., K. Nada, L. X. He, and S. Tachibana. 2003. Impaired photosynthesis in cucumber (Cucumis sativus L.) by high root-zone temperature involves ABA-induced stomatal closure and reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase activity. 園藝學會雜誌 72: 504-510. Nukaya, A., M. Masui and A. Ishida. 1983. Salt Tolerance of Muskmelons as Affected by Various Salinities in Sand Culture. 園藝學會雜誌 51: 427-434. Pardossi, A., F. Malorgio, L. Incrocci, C. Campiotti, and F. Tognoni. 2002. A comparison between two methods to control nutrient delivery to greenhouse melons grown in recirculating nutrient solution culture. Sci. Hortic. 92: 89-95. Pitrat, M. 2008. Melon. Vegetables I: 283-315. Sebastian, P., H. Schaefer, I. R. Telford and S. S. Renner. 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. P. Natl. A. Sci. 107: 14269-14273. Stepansky, A., I. Kovalski, and R. Perl Treves. 1999. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 217: 313-332. Urrestarazu, M., M. C. Salas, D. Valera, A. Gómez and P. C. Mazuela. 2008. Effects of heating nutrient solution on water and mineral uptake and early yield of two Cucurbits under soilless culture. J. Plant Nutr. 31: 527-538. Vyas, S. and L. Kumaranayake. 2006. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plann. 21: 459-468. Wang, X., W. Zhang, Y. Miao, L. Gao and M. D. Lambreva. 2016. Root-zone warming differently benefits mature and newly unfolded leaves of Cucumis sativus L. seedlings under sub-pptimal temperature stress. PloS one. 11: e0155298. Yoshida, S. 1989. Effect of root temperature on gas exchange and water uptake in intact roots of cucumber plants (Cucumis sativus L.) in hydroponics. Biotronics 18: 15. Yoshida, S. 1990. Root temperature effect on root hydraulic resistance in cucumber (Cucumis sativus L.) and figleaf gourd (Cucurbita ficifolia B.) plants. Biotronics 19: 121. Zhang, Y. P., Y. X. Qiao, Y. H. Zhou, and J. Q. Yu. 2008. Effects of root temperature on leaf gas exchange and xylem sap abscisic acid concentrations in six Cucurbitaceae species. Photosynthetica 46: 356-362. Zhang, Y., Y. Zhou, and J. Yu. 2007. Adaptation of cucurbit species to changes in substrate temperature: root growth, antioxidants, and peroxidation. J. Plant Biol. 50: 527-532. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72299 | - |
dc.description.abstract | 甜瓜(Cucumis melo L.)為世界重要一年生草本蔬菜作物。植物根部對溫度敏感,溫室水耕網紋洋香瓜(Cucumis melo L. var. reticulatus)有夏季根溫過高問題,且水耕植株根部對養分與水分的吸收不受限制也不易調節。相較於降低溫室整體環境溫度,單純降低水耕植株根部溫度之範圍較小、消耗能源較少,而更經濟實用。快速降低根溫可在不改動養液配方下,減少根部對水分的吸收。因根溫控制對湛水式水耕網紋洋香瓜果實品質之影響於國內外均尚無完整研究,故本論文於全年三季分別觀察養液控溫處理對網紋洋香瓜 ‘Earl's Favorite’ 地上部各生理參數之影響,以確定各季最佳果實品質之適當根溫;並於春夏作與夏秋作之果實肥大期與成熟期進行短暫低根溫處理,確認改善果實品質之效果,亦探討短暫低根溫處理與NaCl處理間之差異。以湛液式(deep flow technique, DFT)水耕栽培系統與修改之沈養液配方栽培 ‘Earl’s Favorite’,利用水冷式冷水機、加溫棒、循環水系統、不鏽鋼蛇管進行降溫或升溫處理。結果顯示,於春夏作與秋冬作維持根溫在28~31℃可使根系生理機能正常,抵禦地上部氣溫逆境,增進果實品質與消費者購買意願。夏秋季栽培維持根溫在此範圍使果實過重、過大,並破壞網紋美觀。故進一步研究控制水分吸收。春夏季與夏秋季栽培時,於果實肥大期與成熟期短暫低根溫處理可以限制水分吸收,使果實重量維持在適售範圍,但品質不佳;而春夏季處理短暫低根溫差-5℃兩天或三次NaCl皆較對照組提升果實品質,而此兩處理之間,除可溶性固形物外,其他品質上並無差異,且果實甜度與鹹度、以及消費者購買意願亦無差異。故短暫低根溫溫差-5℃兩天處理並無比NaCl處理更佳之效益,而NaCl處理可提升果實品質,且未增加果實鹹味。 | zh_TW |
dc.description.abstract | Melon (Cucumis melo L.) is an important annual herbaceous vegetable crop. The roots of melon plants are sensitive to temperature. Hydroponic melon grown in the greenhouse suffers from high root temperature in summer. Nutrients absorption and water uptake by roots of hydroponic plants are hard to be limited and controlled. Compared to lowering ambient temperature in the greenhouse, simply lowering root-zone temperature of hydroponic plant is more economical and practical owing to smaller range and less energy consumption. Rapidly lowering the root temperature reduces water uptake and nutrient absorption without changing the formula of nutrient solution. The effect of controlling root-zone temperature of deep flow technique (DFT) hydroponic netted muskmelon (Cucumis melo L. var. reticulatus) on fruit quality is not studied worldwide. The present thesis aimed at the effect of controlling root-zone temperature on various physiological parameters to determine the suitable root temperature for the best fruit quality of netted muskmelon ‘Earl’s Favorite’ in 3 seasons separately. Short low root-zone temperature treatments at the fruit enlargement and maturation stages in spring-summer and summer-autumn seasons were also conducted to confirm the improving effect on fruit quality. In addition, the difference between short low root-zone temperature treatment and NaCl treatment was also investigated. ‘Earl’s Favorite’ was cultivated with DFT hydroponic system and previously modified Shen nutrient formula. Nutrient temperatures were controlled by water-cooled chiller, heating rod, circulating water system and stainless steel coil. The results showed that in spring-summer and autumn-winter seasons controlling the root-zone temperature at 28~31°C could maintain the normal physiological function of root system, tolerate the temperature stress aboveground and ultimately increase fruit quality and consumer purchase intention. However, in summer-autumn season, maintaining the root temperature in this range caused the fruits too heavy and too large, and the netting deterioted. So further study on controlling water uptake was conducted. In spring-summer and summer-autumn seasons, short low root-zone temperature treatment could limit water uptake and keep the fruit weight within salable range but with poor fruit quality. When netted muskmelon was treated with temperature difference of -5°C for two days or 3 times of NaCl in the spring-summer season, both treatments showed higher fruit quality compared with the control. While between these 2 treatments, non-significant difference was shown in most items of fruit quality and consumer purchase intention. Hence short low root-zone temperature treatment did not have better effect than 3 times of NaCl applications which improved fruit quality and did not increase the salty taste of fruits. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:34:05Z (GMT). No. of bitstreams: 1 ntu-107-R05628113-1.pdf: 3231444 bytes, checksum: 56e5d6eb30724e9c23ffa45c08f9a483 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要………………………………………………………………………..iv
Abstract…………………………………………………………………….v 圖目錄…………………………………………………………………….vii 表目錄……………………………………………………………………..ix 第一章 前言……………………………………………………………….1 第二章 前人研究………………………………………………………….2 第一節 甜瓜於世界經濟之重要性…………………………………..2 第二節 甜瓜簡介……………………………………………………..2 第三節 臺灣甜瓜栽培………………………………………………..4 第四節 甜瓜水耕栽培………………………………………………..4 第五節 根部溫度對瓜類作物生長發育之影響……………………11 第六節 於高氣溫下降低根溫對作物生長發育之影響……………13 第七節 於低氣溫下提升根溫對胡挖生長發育之影響……………14 第八節 低根溫處理對胡瓜生長發育之影響………………………15 第九節 研究主旨……………………………………………………16 第三章 材料方法………………………………………………………...17 第一節 試驗材料……………………………………………………17 第二節 栽培管理………………………………………………........17 第三節 試驗處理…………………………………………………....20 第四節 調查項目…………………………………………………....23 第五節 統計方法…………………………………………………....26 第四章 結果 …………………………………………………………….28 第一節 於高氣溫環境下根溫對水耕網紋洋香瓜營養生長之影響………………………………………………………………...28 第二節 春夏季栽培降低根溫對網紋洋香瓜營養生長與果實品質 之影響…………………………………………………………...28 第三節 夏秋季栽培降低根溫對網紋洋香瓜營養生長與果實品質 之影響…………………………………………………………...30 第四節 秋冬季栽培提高根溫對網紋洋香瓜營養生長與果實品質 之影響…………………………………………………………...32 第五節 春夏季栽培於生殖生長期處理不同短暫低根溫之水分吸 收限制效果比較………………………………………………...34 第六節 夏秋季栽培於生殖生長期處理不同短暫低根溫之水分吸 收限制效果比較………………………………………………...35 第七節 春夏季栽培於生殖生長期處理不同短暫低根溫限水與鈉 鹽限水處理效果………………………………………………...35 第五章 討論……………………………………………………………...38 第一節 全年栽培網紋洋香瓜之根溫控制效果與最適根溫………38 第二節 根溫對網紋洋香瓜營養生長之影響………………………39 第三節 根溫與葉片元素含量間之關係……………………………40 第四節 短暫低根溫處理之限制水分吸收效果與鹽處理比較……41 第五節 主成分分析之效果…………………………………………41 第六章 結論……………………………………………………………...43 參考文獻………………………………………………………………….44 | |
dc.language.iso | zh-TW | |
dc.title | 養液溫度對水耕網紋洋香瓜生長與發育之影響 | zh_TW |
dc.title | Effect of nutrient temperature on growth and development of deep flow technique hydroponic netted melon | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林淑怡,楊雯如 | |
dc.subject.keyword | 水耕,網紋洋香瓜,根溫, | zh_TW |
dc.subject.keyword | hydroponic,Cucumis melo L. var. reticulatus,RZT, | en |
dc.relation.page | 116 | |
dc.identifier.doi | 10.6342/NTU201803668 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。