Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72279
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張孟基(Men-Chi Chang)
dc.contributor.authorChe-Wei Kuoen
dc.contributor.author郭哲瑋zh_TW
dc.date.accessioned2021-06-17T06:32:57Z-
dc.date.available2021-08-18
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citationAbu-Zaitoon, Y. M., Bennett, K., Normanly, J. & Nonhebel, H. M. (2012). A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiologia Plantarum 146(4): 487-499.
Ariel, F., Diet, A., Verdenaud, M., Gruber, V., Frugier, F., Chan, R. & Crespi, M. (2010). Environmental regulation of lateral root emergence in medicago truncatula requires the HD-Zip I transcription factor HB1. The Plant Cell 22(7): 2171-2183.
Baskin, T. I., Beemster, G. T. S., Judy-March, J. E. & Marga, F. (2004). Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiology 135(4): 2279-2290.
Chen, C.-W. (2003).ABscisic Acid Induces Morphological and Physiological Changes in Roots of Rce (Oryza sativa L.) seedlings of cultivar Taichung Native 1. In Master thesis. National Taiwan University.
Chen, C.-W., Yang, Y.-W., Lur, H.-S., Tsai, Y.-G. & Chang, M.-C. (2006). A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant and Cell Physiology 47(1): 1-13.
Chimungu, J. G., Brown, K. M. & Lynch, J. P. (2014). large root cortical cell size improves drought tolerance in maize. Plant Physiology 166(4): 2166.
Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X. & Wang, S. (2008). activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. The Plant Cell 20(1): 228.
Hager, A. (2003). Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research 116(6): 483-505.
Harris, J. (2015). Abscisic acid: hidden architect of root system structure. Plants 4(3): 548.
He, W., Brumos, J., Li, H., Ji, Y., Ke, M., Gong, X., Zeng, Q., Li, W., Zhang, X., An, F., Wen, X., Li, P., Chu, J., Sun, X., Yan, C., Yan, N., Xie, D. Y., Raikhel, N., Yang, Z., Stepanova, A. N., Alonso, J. M. & Guo, H. (2011). A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. The Plant Cell 23(11): 3944-3960.
Hiroki, I., Jahan, S. I., Takaki, Y., Shunsaku, N., Misuzu, T.-N., Maya, M., Atsushi, O., Yusaku, N. & Yoshiaki, I. (2018). OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiologia Plantarum
Jain, M., Kaur, N., Tyagi, A. K. & Khurana, J. P. (2005). The auxin-responsive GH3 gene family in rice (Oryza sativa). Functional & Integrative Genomics 6(1): 36.
Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6(13): 3901-3907.
Ji, H., Liu, L., Li, K., Xie, Q., Wang, Z., Zhao, X. & Li, X. (2014). PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat. Journal of Experimental Botany 65(17): 4863-4872.
Jones, A. R., Kramer, E. M., Knox, K., Swarup, R., Bennett, M. J., Lazarus, C. M., Leyser, H. M. O. & Grierson, C. S. (2008). Auxin transport through non-hair cells sustains root-hair development. Nature Cell Biology 11: 78.
Kawahara, Y. & Kitamura, Y. (2015). Changes in cell size and number and in rhizodermal development contribute to root tip swelling of Hyoscyamus albus roots subjected to iron deficiency. Plant Physiol Biochem 89: 107-111.
Landsberg, E.-C. (1996). Hormonal regulation of iron-stress response in sunflower roots: a morphological and cytological investigation. Protoplasma 194(1): 69-80.
Li, X., Chen, L., Forde, B. G. & Davies, W. J. (2017). The biphasic root growth response to abscisic acid in arabidopsis involves interaction with ethylene and auxin signalling pathways. Frontiers in Plant Science 8(1493).
Lim, C. W., Baek, W., Jung, J., Kim, J.-H. & Lee, S. C. (2015). Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences 16(7): 15251-15270.
Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4): 402-408.
Lynch, J. P. & Brown, K. M. (2001). Topsoil foraging – an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237(2): 225-237.
Malamy, J. E. & Benfey, P. N. (1997). Down and out in Arabidopsis: the formation of lateral roots. Trends in Plant Science 2(10): 390-396.
Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanada, A., Yaeno, T., Shirasu, K., Yao, H., McSteen, P., Zhao, Y., Hayashi, K.-i., Kamiya, Y. & Kasahara, H. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences 108(45): 18512-18517.
Nick, P. (1999). Signals, motors, morphogenesis -the cytoskeleton in plant development. Plant Biology 1(2): 169-179.
Nishimura, T., Hayashi, K.-i., Suzuki, H., Gyohda, A., Takaoka, C., Sakaguchi, Y., Matsumoto, S., Kasahara, H., Sakai, T., Kato, J.-i., Kamiya, Y. & Koshiba, T. (2014). Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. The Plant Journal 77(3): 352-366.
Novák, O., Hényková, E., Sairanen, I., Kowalczyk, M., Pospíšil, T. & Ljung, K. (2012). Tissue‐specific profiling of the Arabidopsis thaliana auxin metabolome. The Plant Journal 72(3): 523-536.
Overvoorde, P., Fukaki, H. & Beeckman, T. (2010). Auxin control of root development. Cold Spring Harbor Perspectives in Biology 2(6): a001537.
Peret, B., De Rybel, B., Casimiro, I., Benkova, E., Swarup, R., Laplaze, L., Beeckman, T. & Bennett, M. J. (2009). Arabidopsis lateral root development: an emerging story. Trends Plant Science 14(7): 399-408.
Qin, H., Zhang, Z., Wang, J., Chen, X., Wei, P. & Huang, R. (2017). The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLOS Genetics 13(8): e1006955.
Rowe, J. H., Topping, J. F., Liu, J. & Lindsey, K. (2016). Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytologist 211(1): 225-239.
Seung, D., Webster, M. W., Wang, R., Andreeva, Z. & Marc, J. (2013). Dissecting the mechanism of abscisic acid-induced dynamic microtubule reorientation using live cell imaging. Functional Plant Biology 40(3): 224-236.
Shkolnik-Inbar, D. & Bar-Zvi, D. (2010). ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. The Plant Cell 22(11): 3560-3573.
Soeno, K., Goda, H., Ishii, T., Ogura, T., Tachikawa, T., Sasaki, E., Yoshida, S., Fujioka, S., Asami, T. & Shimada, Y. (2010). Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant and Cell Physiology 51(4): 524-536.
Song, Y., You, J. & Xiong, L. (2009). Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Molecular Biology 70(3): 297-309.
Takanori, Y., Momoyo, I., Tsuyoshi, S., Akira, N., Takeshi, N., Hidemi, K., Isomaro, Y., Tomokazu, K., Ken‐Ichiro, H., Yasuo, N. & Jun‐Ichi, I. (2014). The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin‐related processes. The Plant Journal 78(6): 927-936.
Teale, W. & Palme, K. (2018). Naphthylphthalamic acid and the mechanism of polar auxin transport. Journal of Experimental Botany 69(2): 303-312.
Trachsel, S., Kaeppler, S. M., Brown, K. M. & Lynch, J. P. (2013). Maize root growth angles become steeper under low N conditions. Field Crops Research 140: 18-31.
Wang, J.-R., Hu, H., Wang, G.-H., Li, J., Chen, J.-Y. & Wu, P. (2009). Expression of PIN genes in rice (Oryza sativa L.): Tissue specificity and regulation by hormones. Molecular Plant 2(4): 823-831.
Wang, T., Li, C., Wu, Z., Jia, Y., Wang, H., Sun, S., Mao, C. & Wang, X. (2017). Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation. Frontiers in Plant Science 8(1121).
Xu, W., Jia, L., Shi, W., Liang, J., Zhou, F., Li, Q. & Zhang, J. (2013). Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytologist 197(1): 139-150.
Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M. & Sazuka, T. (2007). Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology 143(3): 1362.
Yoshida, S., Forno, D. A. & Cock, J. H. (1976). Laboratory Manual for Physiological Studies of Rice. Int. Rice Res. Inst.
Zhan, A., Schneider, H. & Lynch, J. P. (2015). Reduced lateral root branching density improves drought tolerance in maize. Plant Physiology 168(4): 1603-1615.
Zhao, F. Y., Cai, F. X., Gao, H. J., Zhang, S. Y., Wang, K., Liu, T. & Wang, X. (2015). ABA plays essential roles in regulating root growth by interacting with auxin and MAPK signaling pathways and cell-cycle machinery in rice seedlings. Plant Growth Regulation 75(2): 535-547.
Zhao, Y., Xing, L., Wang, X., Hou, Y.-J., Gao, J., Wang, P., Duan, C.-G., Zhu, X. & Zhu, J.-K. (2014). The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling 7(328): ra53.
Zhu, J. & Geisler, M. (2015). Keeping it all together: auxin–actin crosstalk in plant development. Journal of Experimental Botany 66(16): 4983-4998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72279-
dc.description.abstract根是植物重要的器官,可以吸收土壤中的水及養分、固定植物及儲存能量。而根形態構造的形成與植物生長發育及環境適應性密切相關,其中植物荷爾蒙扮演重要之角色。先前研究發現,外源施加的離層酸 (Abscisic acid, ABA) 可以促進台中在來一號 (TCN1) 幼苗的根尖膨大 (Root tip swelling) ,但其相關機制並不清楚。目前諸多研究指出植物荷爾蒙生長素 (Auxin) 與根生長發育密切相關,影響側根原基形成及根毛生長。因此本試驗目的為瞭解ABA在促進根尖膨大的過程中,生長素是否參與其中。本試驗首先以不同的水稻品種為實驗材料,發現不論稉、秈稻,外加ABA皆可以誘導根尖膨大。利用生長素誘導報導基因 (DR5::GUS) 之水稻轉殖株以ABA處理發現,生長素的分布會隨著根尖膨大程度而逐漸聚集於根尖區域,且在處理15小時後最為明顯。在根尖膨大的區域也偵測到生長素 (IAA) 含量的上升。此外,處理生長素生合成的抑制劑 (Kynurenine, Yucasin) 及極性運輸抑制劑 (NPA) 可以有效地抑制離層酸所誘導的根尖膨大現象。而外源施加IAA則可以使被抑制的膨大現象恢復。在ABA處理之下,根尖區域的生長素相關基因 (OsIAAs, OsPINs, OsYUCs) 及細胞壁合成相關基因 (OsEXPs) 都有表現量上升的情形。以上結果顯示,外源施加ABA所誘導的水稻根尖膨大是透過改變生長素之生合成及分布所達成的。zh_TW
dc.description.abstractRoot is an important organ, which provides several functions for plant growth including resource uptake from soil, anchorage, nutrient transport, and energy storage. Phytohormones are known to play vital roles in these processes. Our previous study has indicated that exogenously added ABA can induce root tip swelling in indica rice (TCN1). Since auxin can regulate many aspects of root development, including lateral root primordium formation and root hair elongation, in this study we investigated whether auxin plays a role in the ABA-mediated root tip swelling in rice. The results showed that ABA-mediated root tip swelling exists in both japonica and indica rice. Histochemical staining of GUS activity driven by an auxin-responsive synthetic promoter (DR5) shown that ABA-mediated root tip swelling was accompanied with a redistribution of auxin. The indole acetic acid (IAA) level was also increased in root tip region. Moreover, the effects of ABA on root tip swelling was repressed by Kynurenine (Kyn) or Yucasin, two auxin biosynthetic inhibitors and NPA, an auxin transporter inhibitor. However, the effects of inhibitors on ABA-mediated root tip swelling can be rescued by exogenous IAA. Meanwhile, auxin related and cell wall related genes were upregulated in root tip with ABA treatment. Taken together, these data suggest that ABA-mediated root tip swelling is dependent on the change of auxin biosynthesis and distribution.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:32:57Z (GMT). No. of bitstreams: 1
ntu-107-R04621113-1.pdf: 2646384 bytes, checksum: 9fe43245e0ff3e63653730cad8a4b6c4 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 I
Abstract II
Figure content IV
Table content IV
Supplementary content IV
Abbreviations V
Chapter 1. Introduction 1
Root architecture and environmental stress 1
General introduction of plant hormone ABA and auxin 2
Effects of auxin on root architecture formation 3
ABA-auxin interaction in the regulation of root architecture 4
Root tip swelling in rice and other species 6
Motivation and objectives 7
Chapter 2. Materials and methods 9
Plant materials and growth conditions 9
Phytohormones and chemical treatments of plant materials 9
Phenotype analysis 10
Histochemical analysis of GUS (β-glucuronidase) activity 10
Indole-3-acetic acid (IAA) analyses 11
RNA extraction and cDNA synthesis 12
Quantitative Real-Time PCR Assays 13
Chapter 3. Results 14
ABA promotes root tip swelling in japonica rice and indica rice 14
Dosage effects of ABA on root tip swelling and auxin distribution 14
Effects of auxin inhibitors on ABA-induced root tip swelling 16
Expression pattern of auxin-related genes in root tip 18
Chapter 4. Discussion 20
ABA promotes root tip swelling in various rice cultivars 20
ABA-induced root tip swelling is related with auxin redistribution in root tip 21
ABA-induced root tip swelling is dependent on auxin transport and biosynthesis 22
Conclusion and perspectives 23
References 25
dc.language.isoen
dc.subject生長素zh_TW
dc.subject離層酸zh_TW
dc.subject抑制劑zh_TW
dc.subject根尖膨大zh_TW
dc.subjectinhibitorsen
dc.subjectauxinen
dc.subjectABAen
dc.subjectroot tip swellingen
dc.title離層酸可參與生長素生合成之改變及分布來促進水稻幼苗根尖膨大zh_TW
dc.titleAbscisic Acid Promotes Root-tip Swelling is Involved in Alteration of Auxin Biosynthesis and Distribution in Rice Seedlingsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪傳揚(Chwan-Yang Hong),侯新龍(Shin-Lon Ho),黃文理(Wen-Lii Huang),蔡育彰(Yu-Chang Tsai)
dc.subject.keyword離層酸,生長素,抑制劑,根尖膨大,zh_TW
dc.subject.keywordABA,auxin,inhibitors,root tip swelling,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201603576
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved