Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余正道(Jeng-Daw Yu)
dc.contributor.authorTzu-Ang Kuoen
dc.contributor.author郭子昂zh_TW
dc.date.accessioned2021-06-17T06:32:54Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[ESY17] Hélène Esnault, Claude Sabbah, and Jeng-Daw Yu. E1-Degeneration of the Irregular Hodge
Filtration (with an Appendix by Morihiko Saito). Journal für die reine und angewandte Mathematik,
729:171–227, 2017.
[FIM] Domenico Fiorenza, Donatella Iacono, and Elena Martinengo. Differential Graded Lie Algebras
Controlling Infinitesimal Deformations of Coherent Sheaves.
[Ful93] William Fulton. Introduction to Toric Varieties, volume 131 of Annals of Mathematics Studies.
Princeton University Press, 1993.
[Her02] Klaus Hertling. tt* Geometry, Frobenius Manifolds, Their Connections, and the Construction
for Singularities. 2002.
[HM03] Klaus Hertling and Yuri Manin. Frobenius Manifolds. 2003.
[Hor74] Eiji Horikawa. On Deformations of Holomorphic Maps II. Journal of the Mathematical Society
of Japan, 26(4):647–67, 1974.
[Kat72] Nicholas Katz. Algebraic Solutions of Differential Equations (p-Curvature and the Hodge Filtration).
Inventiones mathematicae, 18:1–118, 1972.
[KKP17] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev. Bogomolov-Tian-Todorov theorems
for Landau-Ginzburg models. Journal of Differential Geometry, 105(1):55–117, 2017.
[KO68] Nicholas Katz and Tadao Oda. On the Differentiation of De Rham Cohomology Classes with
respect to Parameters. Journal of Mathematics of Kyoto University, 8(2):199–213, 1968.
[Man] Marco Manetti. Deformation Theory via Differential Graded Lie Algebras.
[Nil05] Benjamin Nill. Gorenstein Toric Fano Varieties. manuscripta mathematica, 116(2):183–210,
205.
[Sab06] Claude Sabbah. Hypergeometric Periods for a Tame Polynomial. 63(2), 2006.
[Ser06] Edoardo Sernesi. Deformations of Algebraic Schemes, volume 334 of Grundlehren der mathematischen
Wissenschaften. Springer-Verlag Berlin Heidelberg, 2006.
[SY15] Claude Sabbah and Jeng-Daw Yu. On the irregular Hodge filtration of exponentially twisted
mixed Hodge modules. 3, 2015.
[Voi08] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I. Cambridge University Press,
2008.
[Yu14] Jeng-Daw Yu. Irregular Hodge Filtration on Twisted De Rham Cohomology. Manuscripta
Mathematica, 144(1):99–133, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278-
dc.description.abstract首先,我們證明Landau-Ginzburg模型。接著,在數個假設之下,我們證明在Landau-Ginzburg模型的泛形變參數空間上能連繫出一個沒有度量與Euler場的Frobinus流形。對於那些支撐集是平滑Fano多胞形的非退化Laurent多項式,我們證明這些假設為真。zh_TW
dc.description.abstractWe first prove the Local Torelli Theorem for Landau-Ginzburg models. Next, under several conditions, we prove that there is a Frobenius manifold without metric and Euler field, associated to the universal parameter space of Landau-Ginzburg models. We prove these assumptions hold true for every nondegenerate Laurent polynomial whose support polytope is a smooth.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:32:54Z (GMT). No. of bitstreams: 1
ntu-107-R05221009-1.pdf: 575610 bytes, checksum: 63f1a0462e91850608d5bac82a9157d5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………. #
誌謝…………………………………………………………………………………...i
中文摘要……………………………………………………………………………..ii
ABSTRACT………………………………………………………………………….iii
CONTENTS………………………………………………………………………….iv
Chapter 0 Introduction…………….………………………………………………….1
Chapter 1 Local Torelli Theorem…………………………………………………….3
Chapter 2 Frobenius manifold without metric and Euler field……………………….8
2. 1 The construction theorem……………………………………………………8
2.2 Discussion for Laudau-Ginzburg models………………………………….10
Chapter 3 Construction in Toric Case……………………………………………….16
References………………………………………………………………………...…21
dc.language.isoen
dc.subjectLaudau-Ginzburg模型zh_TW
dc.subjectFrobenius流形zh_TW
dc.subject環面多樣體zh_TW
dc.subject平滑Fano多胞形zh_TW
dc.subjectLandau-Ginzburg modelen
dc.subjectsmooth Fano polytopeen
dc.subjecttoric varietyen
dc.subjectFrobenius manifolden
dc.titleLandau-Ginzburg模型的形變參數空間所聯繫的Frobenius流形zh_TW
dc.titleFrobenius Manifolds Associated to the Deformation Parameter Space of Landau-Ginzburg Modelsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王金龍(Chin-Lung Wang),李元斌(Yuan-Pin Lee)
dc.subject.keywordLaudau-Ginzburg模型,Frobenius流形,環面多樣體,平滑Fano多胞形,zh_TW
dc.subject.keywordLandau-Ginzburg model,Frobenius manifold,toric variety,smooth Fano polytope,en
dc.relation.page22
dc.identifier.doi10.6342/NTU201803751
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
562.12 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved