請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余正道(Jeng-Daw Yu) | |
| dc.contributor.author | Tzu-Ang Kuo | en |
| dc.contributor.author | 郭子昂 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:32:54Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | [ESY17] Hélène Esnault, Claude Sabbah, and Jeng-Daw Yu. E1-Degeneration of the Irregular Hodge
Filtration (with an Appendix by Morihiko Saito). Journal für die reine und angewandte Mathematik, 729:171–227, 2017. [FIM] Domenico Fiorenza, Donatella Iacono, and Elena Martinengo. Differential Graded Lie Algebras Controlling Infinitesimal Deformations of Coherent Sheaves. [Ful93] William Fulton. Introduction to Toric Varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, 1993. [Her02] Klaus Hertling. tt* Geometry, Frobenius Manifolds, Their Connections, and the Construction for Singularities. 2002. [HM03] Klaus Hertling and Yuri Manin. Frobenius Manifolds. 2003. [Hor74] Eiji Horikawa. On Deformations of Holomorphic Maps II. Journal of the Mathematical Society of Japan, 26(4):647–67, 1974. [Kat72] Nicholas Katz. Algebraic Solutions of Differential Equations (p-Curvature and the Hodge Filtration). Inventiones mathematicae, 18:1–118, 1972. [KKP17] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev. Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models. Journal of Differential Geometry, 105(1):55–117, 2017. [KO68] Nicholas Katz and Tadao Oda. On the Differentiation of De Rham Cohomology Classes with respect to Parameters. Journal of Mathematics of Kyoto University, 8(2):199–213, 1968. [Man] Marco Manetti. Deformation Theory via Differential Graded Lie Algebras. [Nil05] Benjamin Nill. Gorenstein Toric Fano Varieties. manuscripta mathematica, 116(2):183–210, 205. [Sab06] Claude Sabbah. Hypergeometric Periods for a Tame Polynomial. 63(2), 2006. [Ser06] Edoardo Sernesi. Deformations of Algebraic Schemes, volume 334 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 2006. [SY15] Claude Sabbah and Jeng-Daw Yu. On the irregular Hodge filtration of exponentially twisted mixed Hodge modules. 3, 2015. [Voi08] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I. Cambridge University Press, 2008. [Yu14] Jeng-Daw Yu. Irregular Hodge Filtration on Twisted De Rham Cohomology. Manuscripta Mathematica, 144(1):99–133, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72278 | - |
| dc.description.abstract | 首先,我們證明Landau-Ginzburg模型。接著,在數個假設之下,我們證明在Landau-Ginzburg模型的泛形變參數空間上能連繫出一個沒有度量與Euler場的Frobinus流形。對於那些支撐集是平滑Fano多胞形的非退化Laurent多項式,我們證明這些假設為真。 | zh_TW |
| dc.description.abstract | We first prove the Local Torelli Theorem for Landau-Ginzburg models. Next, under several conditions, we prove that there is a Frobenius manifold without metric and Euler field, associated to the universal parameter space of Landau-Ginzburg models. We prove these assumptions hold true for every nondegenerate Laurent polynomial whose support polytope is a smooth. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:32:54Z (GMT). No. of bitstreams: 1 ntu-107-R05221009-1.pdf: 575610 bytes, checksum: 63f1a0462e91850608d5bac82a9157d5 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………. #
誌謝…………………………………………………………………………………...i 中文摘要……………………………………………………………………………..ii ABSTRACT………………………………………………………………………….iii CONTENTS………………………………………………………………………….iv Chapter 0 Introduction…………….………………………………………………….1 Chapter 1 Local Torelli Theorem…………………………………………………….3 Chapter 2 Frobenius manifold without metric and Euler field……………………….8 2. 1 The construction theorem……………………………………………………8 2.2 Discussion for Laudau-Ginzburg models………………………………….10 Chapter 3 Construction in Toric Case……………………………………………….16 References………………………………………………………………………...…21 | |
| dc.language.iso | en | |
| dc.subject | Laudau-Ginzburg模型 | zh_TW |
| dc.subject | Frobenius流形 | zh_TW |
| dc.subject | 環面多樣體 | zh_TW |
| dc.subject | 平滑Fano多胞形 | zh_TW |
| dc.subject | Landau-Ginzburg model | en |
| dc.subject | smooth Fano polytope | en |
| dc.subject | toric variety | en |
| dc.subject | Frobenius manifold | en |
| dc.title | Landau-Ginzburg模型的形變參數空間所聯繫的Frobenius流形 | zh_TW |
| dc.title | Frobenius Manifolds Associated to the Deformation Parameter Space of Landau-Ginzburg Models | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王金龍(Chin-Lung Wang),李元斌(Yuan-Pin Lee) | |
| dc.subject.keyword | Laudau-Ginzburg模型,Frobenius流形,環面多樣體,平滑Fano多胞形, | zh_TW |
| dc.subject.keyword | Landau-Ginzburg model,Frobenius manifold,toric variety,smooth Fano polytope, | en |
| dc.relation.page | 22 | |
| dc.identifier.doi | 10.6342/NTU201803751 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 562.12 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
