Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72272
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡欣穆(Hsin-Mu Tsai)
dc.contributor.authorMeng-Ting Tsaien
dc.contributor.author蔡孟庭zh_TW
dc.date.accessioned2021-06-17T06:32:33Z-
dc.date.available2018-08-20
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[1] Adata mr16 led. https://www.ledvance.com/appsinfo/pdc/pdf.do?cid=GPS01_1054904&mpid=ZMP_1907985&vid=PP_EUROPE_DE_eCat&lid=EN.
[2] Condenser lens. https://www.thorlabs.com/thorproduct.cfm?partnumber=ACL50832U-A.
[3] Convex lens. https://www.thorlabs.com/thorproduct.cfm?partnumber=LA1384-A.
[4] Dilation. https://en.wikipedia.org/wiki/Dilation_(morphology).
[5] Dlp6500 programmer guide. http://www.ti.com/lit/ug/dlpu018d/dlpu018d.pdf.
[6] Dlp6500fye. http://www.ti.com/lit/ds/symlink/dlp6500fye.pdf.
[7] l1-magic. https://statweb.stanford.edu/~candes/l1magic/.
[8] Pycrafter 6500. https://github.com/csi-dcsc/Pycrafter6500.
[9] E. Candes and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse problems, 23(3):969, 2007.
[10] J. C. Chau, C. Morales, and T. D. Little. Using spatial light modulators in mimo visible light communication receivers to dynamically control the optical channel. In EWSN, pages 347–352, 2016.
[11] C. Danakis, M. Afgani, G. Povey, I. Underwood, and H. Haas. Using a cmos camera sensor for visible light communication. In 2012 IEEE Globecom Workshops, pages 1244–1248, Dec 2012.
[12] D. L. Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306, 2006.
[13] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE signal processing magazine, 25(2):83–91, 2008.
[14] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper. Projector: Agile reconfigurable data center interconnect.
[15] A. Jovicic, J. Li, and T. Richardson. Visible light communication: opportunities, challenges and the path to market. IEEE Communications Magazine, 51(12):26–32, December 2013.
[16] M. Kodama and S. Haruyama. A fine-grained visible light communication position detection system embedded in one-colored light using dmd projector. Mobile Information Systems, 2017, 2017.
[17] J. Lee, S. Hudson, and P. Dietz. Hybrid infrared and visible light projection for location tracking. In Proceedings of the 20th annual ACM symposium on User interface software and technology, pages 57–60. ACM, 2007.
[18] S. Okada, T. Yendo, T. Yamazato, T. Fujii, M. Tanimoto, and Y. Kimura. On-vehicle receiver for distant visible light road-to-vehicle communication. In Intelligent Vehicles Symposium, 2009 IEEE, pages 1033–1038. IEEE, 2009.
[19] J. B. Sampsell. Digital micromirror device and its application to projection displays. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 12(6):3242–3246, 1994.
[20] D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien. A 3-gb/s single-led ofdm-based wireless vlc link using a gallium nitride murmLED. IEEE Photonics Technology Letters, 26(7):637–640, April 2014.
[21] T. Yamazato, I. Takai, H. Okada, T. Fujii, T. Yendo, S. Arai, M. Andoh, T. Harada, K. Yasutomi, K. Kagawa, et al. Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 2014.
[22] J. Yang and Y. Zhang. Alternating direction algorithms for nell_1-problems in compressive sensing. SIAM journal on scientific computing, 33(1):250–278, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72272-
dc.description.abstract隨著LED以及通訊技術的發展,可見光通訊(VLC)在過去十年間有大幅的進展。近幾年的研究主要面向於增加可見光通訊的傳輸距離以及穩定度。然而,可見光接收器的設計卻是將可見光通訊實施於現實系統的一大問題。光電二極體是一個最常使用於可見光通訊系統的光接收器。但由於光電二極體會接受可視角內(FOV)所有光的特性,使得接收到的訊號容易受到環境光的干擾,也因為這個原因,傳統上的可見光接收器無法在同時有多個傳輸端的環境下工作,這是無法應用在實際無線通訊上的。因此,在論文中我們針對這兩個問題設計了一個動態調整可視範圍的可見光接收器,它能支持高速通訊並能區別多個傳輸端同時發送的訊號,甚至不需要利用複雜的多工技術就能達到多傳輸端通訊。我們利用壓縮感知(Compressive sensing)快速的偵測傳輸端的位置,接著透過數位微鏡設備(DMD)動態調整接收端的FOV來減少受到的干擾,並提出使用控制訊號在多傳輸端的情境下準確偵測所有傳輸端的位置。最終,實驗結果顯示,我們所設計的可見光接收器可以在太陽光干擾中相較於傳統接收器減少約10%解碼錯誤率、幾乎完全地消除了來自於其他傳輸端的干擾並且即便傳輸端在偵測中移動了2個像素的距離仍然可以偵測出傳輸端的位置。zh_TW
dc.description.abstractAs LED and communication technology advances, visible light communication (VLC) is improved by past research for decade. However, receiver is one of the main problems of VLC system to deploy in reality. Photodiode is the most commonly used receiving component of a VLC system. Due to characteristic of photodiode, photodiode-based receiver is vulnerable to many types of interferences. Furthermore, photodiode-based solution does not have the ability to separate and decode signals from multiple sources within the FOV, which is unacceptable for communication.
In this thesis, we design and implement a dynamic-FOV VLC receiver which can support high-speed communications and have ability to separate signals from multiple transmitters broadcasting simultaneously. Our design further enables multi-transmitter communications without the need of a complex multiplexing technique. To mitigate interference, we leverage compressive sensing for fast detection of the transmitters, followed by dynamically adjustment of the size and the location of the receiver’s FOV. Moreover, we propose a method that exploits a control signal to accurately detect all transmitters under multi-transmitter scenarios. Finally, we adopt software solutions to synchronize received samples, instead of using hardware I/O, resulting in fast and accurate synchronization. Results of real-world experiments have shown that our system can reduce up to 10% decoding error rate under interference from sunlight, and also eliminate interference from other transmitter broadcasting at the same time. Our evaluation result also shows that the proposed system can still reliably detect the location of the transmitter even if the transmitters have movements up to 2 pixels during detection.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:32:33Z (GMT). No. of bitstreams: 1
ntu-107-R05922078-1.pdf: 11798476 bytes, checksum: 5d44feee9bffb3d1b10400a2d63accf0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝iii
摘要iv
Abstract v
1 Introduction 1
2 Related work 5
2.1 VLC system with DMD . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Camera-based VLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Preliminary 7
3.1 Spatial light modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 DMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 DLP projector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Compressive sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Brief overview of the compressive sensing theory . . . . . . . . . 9
3.2.3 Image compressive sensing . . . . . . . . . . . . . . . . . . . . . 10
4 System Design 12
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Transmitter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Receiver Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Light Filter and Receiver Design . . . . . . . . . . . . . . . . . . 16
4.3.3 Transmitter Detection . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Noise Removal and Saving Power . . . . . . . . . . . . . . . . . . . . . 19
4.5 Multiple Transmitter Detection . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Implementation 23
5.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Pattern display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Detection and Decoding Latency . . . . . . . . . . . . . . . . . . . . . . 26
6 Evaluation 27
6.1 Optical system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.1 Quality of reconstruction . . . . . . . . . . . . . . . . . . . . . . 28
6.2.2 FOV Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Control signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4.1 System Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4.2 Sunlight interference . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4.3 Multi-source interference . . . . . . . . . . . . . . . . . . . . . . 40
7 Conclusion 42
Bibliography 43
dc.language.isoen
dc.subject數位微鏡設備zh_TW
dc.subject壓縮感知zh_TW
dc.subject可見光通訊zh_TW
dc.subjectDMDen
dc.subjectcompressive sensingen
dc.subjectVisible light communicationen
dc.title基於數位微鏡設備之動態視界可見光通訊系統zh_TW
dc.titleDynamic Field-of-View Visible Light Communication Receiver with Digital Micromirror Deviceen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林靖茹,陳鴻文
dc.subject.keyword可見光通訊,數位微鏡設備,壓縮感知,zh_TW
dc.subject.keywordVisible light communication,DMD,compressive sensing,en
dc.relation.page45
dc.identifier.doi10.6342/NTU201803550
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
11.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved