Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72268
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅筱鳳(Hsiao-Feng Lo)
dc.contributor.authorHsin-Kai Huangen
dc.contributor.author黃新凱zh_TW
dc.date.accessioned2021-06-17T06:32:20Z-
dc.date.available2021-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation1. 王仕賢和謝明憲. 2005. 甘藍. 臺灣農家要覽增修訂三版 農作篇(二). 財團法人豐年社. 臺北. p. 363-366.
2. 行政院農業委員會. 2017. 臺灣農業統計年報105年. 行政院農業委員會編印. 臺北.
3. 行政院農業委員會農業試驗所、中國種苗改進協會. 1994. 初秋甘藍. p.148. 臺灣地區現有作物栽培品種名錄-十字花科. 行政院農業委員會農業試驗所. 臺中.
4. 李岱鑫. 2015. 高雄果菜運銷公司高麗菜批發價格預測之研究-蒐集私有資料的價值. 國立清華大學國際專業管理碩士班學位論文. 55pp.
5. 呂秀英. 2006. 多變數分析在農業科技之應用. 作物,環境與生物資訊 3(3):199-216
6. 呂秀英、魏夢麗和呂椿棠. 2006. 用 Excel 解決農業研究資料統計分析的方法 (四)-相關與迴歸. 技術服務 17.3: 27-30.
7. 林震哲、林元鵬和黃宏莆. 2016. 旱災災害應變管理機制之運用. 災害防救科技與管理. 5:27-47.
8. 姚銘輝, 陳守泓, and 漆匡時. 2007. 利用葉綠素螢光估算作物葉片之光合作用. 台灣農業研究 56:224-236.
9. 徐邦達. 2002. 葉綠素螢光和 PAM 螢光儀: 原理及測量. 2000年光合作用研討會:7-8.
10. 馬家齊. 2015. 氣候變遷下因應枯旱之水庫供灌區農業用水管理.國立中央大學土木工程學系研究所博士論文. 135pp.
11. 國立中興大學農業暨自然資源學院. 2007. 蔬果品質分級標準暨包裝規格手冊.行政院農業委員會農糧署編印. 南投. p. 23
12. 曹幸之和羅筱鳳. 2014. 甘藍. 蔬菜(II). 復文書局. 臺北. p. 93-97.
13. 陳葦玲. 2011. 影響甘藍抗氧化力之因子探討. 臺中區農業改良場特刊:177-190.
14. 楊清富. 2014. 土壤水分感測技術及應用. 臺南區農業專訊:18-21.
15. 農田水利會聯合會. 2016. 105年度農田水利會灌溉管理業務規範. 農田水利會聯合會編印 p.124-130
16. 廖芳心、洪立和黃涵. 1993. 甘藍及結球白菜之結球生理. 蔬菜生產與發展研討會專刊. p. 181-192
17. 蔣永正和蔣慕琰. 2004. 植物抗氧化系統與除草劑之氧化性毒害. 藥毒所專 題報導 72: 1-12.
18. 蕭政弘. 2017. 甘藍產業特性與品種類型. 臺中區農業專訊 96:3-5.
19. 謝明憲、許鈞涵和王仕賢. 2011. 十字花科蕓苔屬蔬菜育種趨勢與生技應用概況. 農業生技產業季刊. 25:46-52.
20. Abdrabbo, M., F. Hashem, M. Abul-Soud, and S.H. Abd-Elrahman. 2015. Sustainable production of cabbage using different irrigation levels and fertilizer types affecting some soil chemical characteristics. Int J. Plant Soil Sci. 8:1-13.
21. Adeniran, K., M. Amodu, M. Amodu, and F. Adeniji. 2010. Water requirements of some selected crops in Kampe dam irrigation project. Austral. J. Agr. Eng. 1:119.
22. Adeyemo, J., F. Otieno, and J. Ndiritu. 2008. Differential evolution for optimizing irrigation water use. Proceedings of the bi-annual international conference of water institute of southern Africa. Sun City, South Africa.
23. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irr. drainage paper 56. FAO, Rome 300:D05109.
24. Álvarez, S., A. Navarro, S. Bañón, and M.J. Sánchez-Blanco. 2009. Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Scientia Hort. 122:579-585.
25. Andaloro, J., K. Rose, A. Shelton, C. Hoy, and R. Becker. 1983. Cabbage growth stages. New York’s Food Life Sci. Bull. 101
26. Asare, D., I. Tawiah, J. Frimpong, M. Yaro, K. Banson, E. Ayeh, and L. Heng. 2010. Yield, water and nitrogen use by drip-irrigated cabbage grown under different levels of applied water. Biotechnol. Nuclear Agri. Inst., GAEC, Box LG80 Legon, Ghana.
27. Badawi, G.H., N. Kawano, Y. Yamauchi, E. Shimada, R. Sasaki, A. Kubo, and K. Tanaka. 2004. Over‐expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol. Plant. 121:231-238.
28. Bahadur A, R. Kumar, U. Mishra, A. Rai and M. Singh. 2010. Physiological approaches for screening of tomato genotypes for moisture stress tolerance. National Conf. Plant Physiol. BHU, Varanasi during Nov. 25-27, 2010.142pp.
29. Bahadur A., A. Chatterjee, R. Kumar, M. Singh and S. Naik. 2011. Physiological and biochemical basis of drought tolerance in vegetables. Veg. Sci. 38:1-16
30. Beshir, S. 2017. Review on estimation of crop water requirement, irrigation frequency and water use efficiency of cabbage production. J. Geoscience and Environ. Protection 5:59.
31. Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Austral. J. Agr. Res. 56:1159-1168.
32. Blum, A. 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 112:119-123.
33. Boaretto, L.F., G. Carvalho, L. Borgo, S. Creste, M.G. Landell, P. Mazzafera, and R.A. Azevedo. 2014. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol. Biochem. 74:165-175.
34. Chai, Q., Y. Gan, C. Zhao, H.-L. Xu, R.M. Waskom, Y. Niu, and K.H. Siddique. 2016. Regulated deficit irrigation for crop production under drought stress. Rev. Agron. Sustainable Dev. 36:3.
35. Cogo, S.L., F.C. Chaves, M.A. Schirmer, R.C. Zambiazi, L. Nora, J.A. Silva, and C.V. Rombaldi. 2011. Low soil water content during growth contributes to preservation of green colour and bioactive compounds of cold-stored broccoli (Brassica oleraceae L.) florets. Postharvest Biol. Technol. 60:158-163.
36. Colaizzi, P.D., E.M. Barnes, T.R. Clarke, C.Y. Choi, P.M. Waller, J. Haberland, and M. Kostrzewski. 2003. p J. Irr. Drainage Eng. 129:36-43.
37. Costa, J.M., M.F. Ortuño, and M.M. Chaves. 2007. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. J. integrative plant Biol. 49:1421-1434.
38. De Pascale, S., L. Dalla Costa, S. Vallone, G. Barbieri, and A. Maggio. 2011. Increasing water use efficiency in vegetable crop production: from plant to irrigation systems efficiency. HortTechnology 21:301-308.
39. Delta-T Devices. 2007. User manual: WET-UM-1.4. Delta-T Devices, Cambrdige, UK.
40. Ding S, Q. Lu, Y. Zhang, Z. Yang, X. Wen, L. Zhang and C. Lu. 2009. Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol. Biol. 69: 577-592.
41. Dott. Agr. Ivan Solinas and Ammar Husham Jalal AL-Bayati. 2014. Assessment of water requirement and irrigation scheduled by using of subsurface drip irrigation for tomato (Solanaceae) with support of FAO cropwat in Abu Ghraib
42. Esfahany, M., E. Mamnouie, R.F. Ghazvini, and B. Nakhoda. 2006. The effects of water deficit on crop yield and the physiological characteristics of barley (Hordeum vulgare L.) varieties. J. Agr. Sci. Tech. 8:211-219
43. Fereres, E. and M.A. Soriano. 2006. Deficit irrigation for reducing agricultural water use. J. Expt. Bot. 58:147-159.
44. Foyer C. H. and G. Noctor. 2000. Oxygen processing in photosynthesis: regulation and signalling. New Phytol. 146:359-388.
45. Gilbert, M.E. and V. Medina. 2016. Drought adaptation mechanisms should guide experimental design. Trends in plant Sci. 21:639-647.
46. Haris, A., K. Sunil, and A. Singh. 2014. Water requirement and irrigation scheduling through drip systems in cabbage (Brassica oleracea var. capitata). HortFlora Res. Spectrum 3:166-168.
47. Instruments, H. 2006. Operations Manual, Setup, Installation & Maintenance: Handy PEA, Pocket PEA & PEA Plus Software, version 1.0. England, King’s Lynn, Norfolk.
48. Jiang, Y., H. Liu, and V. Cline. 2009. Correlations of leaf relative water content, canopy temperature, and spectral reflectance in perennial ryegrass under water deficit conditions. HortScience 44:459-462.
49. Jones, H.G. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. J. Expt. Bot. 55:2427-2436.
50. Kiran S., S. Kusvuran, M. Talhouni, K. Sonmez, S. Ellialtioglu, and F. Ozkay. 2014. The studies on some biochemical changes and ion regulation in the tomato genotypes exposed to drought stress. 6th Balkan symposium on vegetables and potatoes. Zagreb. Croatia. 6:369-376
51. Kuşvuran S., HY. Daşgan and K. Abak. Effects of drought stress on antioxidant enzymes activities in melon. National Vegetable Symposium. Van. 8:309-312.
52. Kusvuran S., S. Ellialtioglu and Z. Polat. 2013. Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Hort. Environ. Biotechnol. 54(4): 319-325.
53. Martin B. and N. A. Ruiz-Torres. 1992. Effects of water-deficit stress on photosynthesis, its components and component limitations, and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiol. 100: 733-739 mechanism to sustain the viability of plan s: The physiological limits of improved photosynthesis. J. Plant Physiol. 168: 79-87
54. Mexoese, N., F. Ampiaw, V. Owusu-Gyimah, and B. Ibrahim. 2013. Irrigation scheduling and water use efficiency on cabbage yield. Ghana Electricity Company’s Power House Off, Adaklu.
55. Miller, G., N. Suzuki, S. Ciftci‐Yilmaz, and R. Mittler. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 33:453-467.
56. Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
57. Nakano, Y. and K. Asada, 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880
58. Nayyar, H. and D. Gupta. 2006. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environmental and Expt. Botany 58:106-113.
59. Nelson, S. and K. Hwang. 1976. Water usage by cabbage plants at different stages of growth. Canadian J. Plant Sci. 56:563-566.
60. Nemani, R.R. and S.W. Running. 1989. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. of Appl. Meteorol. 28:276-284.
61. Nezamia, A., Z. Boroumand Rezazadehb, and A. Hosseini. 2007. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert 12:99-104.
62. Pawar, G., M. Kale, and J. Lokhande. 2017. Response of Aquacrop model to different irrigation schedules for irrigated cabbage. Agricultural Research 6:73-81.
63. Polley, H.W. 2002. Implications of atmospheric and climatic change for crop yield and water use efficiency. Crop Sci. 42:131-140.
64. Radovich, T.J., M.D. Kleinhenz, and N.J. Honeck. 2004a. Important cabbage head traits and their relationships at five points in development. J. Veg. Crop Prod. 10:19-32.
65. Radovich, T.J., M.D. Kleinhenz, J.F. Delwiche, and R.E. Liggett. 2004b. Triangle tests indicate that irrigation timing affects fresh cabbage sensory quality. Food quality and preference 15:471-476.
66. Radovich, T.J.K. 2004. Effects of abiotic growth factors on glucosinolate Levels, sensory quality and yield components in cabbage (Brassica oleracea group capitata), Ohio State Univ.
67. Radovich, T.J.K. 2005. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J. American Soc. Hort. Sci. 130:943.
68. Reiss, C. 1993. Measuring the amount of ascorbic acid in cabbage. Tested studies for laboratory teaching 7:8.
69. Salter, P.J. 1967. Crop responses to water at different stages of growth. Commonwealth Agr. Bur. Farna Royal. Buks; England.
70. Santosh, D., K. Tiwari, and V.K. Singh. 2017. Influence of different protected cultivation structures on water requirements of winter vegetables. Intl. J. Agri. Environ. Biotechnol. 10:93.
71. Scandalios John G., 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7-12.
72. Schaedle, M. and J.A. Bassham. 1977. Chloroplast glutathione reductase. Plant Physiol. 59:1011-1012.
73. Seciu, A.-M., A. Oancea, A. Gaspar, L. Moldovan, O. Craciunescu, L. Stefan, V. Petrus, and F. Georgescu. 2016. Water use efficiency on cabbage and cauliflower treated with a new biostimulant composition. Agr. Agr. Sci. Proc. 10:475-484.
74. Seidel, S.J., S. Werisch, K. Barfus, M. Wagner, N. Schütze, and H. Laber. 2016. Field evaluation of irrigation scheduling strategies using a mechanistic crop growth model. Irr. Drainage 65:214-223.
75. Seidel, S.J., S. Werisch, N. Schütze, and H. Laber. 2017. Impact of irrigation on plant growth and development of white cabbage. Agr. Water Mgt. 187:99-111.
76. Sharma P. and RS. Dubey. 2005. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J. Plant Physiol. 162: 854-864.
77. Shibayama, M., W. Takahashi, S. Morinaga, and T. Akiyama. 1993. Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer. Remote Sensing Environ. 45:117-126.
78. Shock, C.C. and F.-X. Wang. 2011. Soil water tension, a powerful measurement for productivity and stewardship. HortScience 46:178-185.
79. Silva, M.d.A., J.L. Jifon, J.A. Da Silva, and V. Sharma. 2007. Use of physiological index as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiol. 19:193-201.
80. Simonne, E., M. Dukes, and D. Haman. 2004. Principles and practices of irrigation management for vegetables. Vegetable Production Guide for Florida. University of Florida, Gainesville, FL:33-39.
81. Singh, B., S. Sharma, and B. Singh. 2009. Combining ability for superoxide dismutase, peroxidase and catalase enzymes in cabbage head (Brassica oleracea var. capitata L.). Scientia Hort. 122:195-199.
82. Singh, J., A. Upadhyay, A. Bahadur, B. Singh, K. Singh, and M. Rai. 2006. Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Scientia Hort. 108:233-237.
83. Singh, R. and R. Alderfer. 1966. Effects of soil-moisture stress at different periods of growth of some vegetable crops. Soil Sci. 101:69-80.
84. Smirnoff N., 2000. Ascorbic acid: Metabolism and functions of a multifaceted molecule. Curr. Opin. Plant Biol. 3: 229-235
85. Songsri, P., S. Jogloy, C. Holbrook, T. Kesmala, N. Vorasoot, C. Akkasaeng, and A. Patanothai. 2009. Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agr. water Mgt. 96:790-798.
86. Suárez, L., P. Zarco-Tejada, J. Berni, V. González-Dugo, and E. Fereres. 2009. Modelling PRI for water stress detection using radiative transfer models. Remote Sensing of Environ. 113:730-744.
87. Suárez, L., P.J. Zarco-Tejada, G. Sepulcre-Cantó, O. Pérez-Priego, J. Miller, J. Jiménez-Muñoz, and J. Sobrino. 2008. Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sensing of Environ. 112:560-575.
88. Thomas, J., L. Namken, and R. Brown. 1970. Yield of cabbage in relation to nitrogen and water supply. J. American Soc. Hort. Sci. 95:732-735.
89. Thompson, R., M. Gallardo, L. Valdez, and M. Fernández. 2007a. Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agr. Water Mgt. 92:13-28.
90. Thompson, R., M. Gallardo, L. Valdez, and M. Fernández. 2007b. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agr.Water Mgt. 88:147-158.
91. Tiwari K.N., Singh A., Mal P.K., 2003. Effect of drip irrigation on yield of cabbage (Brassica oleracea L. var. capitata) under mulch and non-mulch conditions. Agr. Water Mgt. 58: 19–28. UK.
92. van Bavel, C., 1953. A drought criterion and its application inevaluating drought incidence and hazard. Agron. J. 45, 167-172
93. Vijayakumar P, Subba Rao AVM and Sarath Chandran MA. 2016. Agrometeoro-logical data collection, Analysis and management. Central research institute for dryland agriculture, Hyderabad- 500 059. 152p.
94. Von Zabeltitz, C. 2011. Crop water requirement and water use efficiency, p.313-319.). Integrated Greenhouse Systems for Mild Climates. Springer.
95. Wilhelm, Christian, and Dirk Selmar. 2011. Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis.'J. Plant Physiol. 168(2): 79-87.
96. Wilhite, DA. and Glantz, M.H, 1985. Understanding the drought phenomenon: the role of definitions. Water Int. 10, 111-120
97. Xu, C. and D. Leskovar. 2014. Growth, physiology and yield responses of cabbage to deficit irrigation. Hort. Sci. 41:138-146.
98. Yang, H., H. Liu, J. Zheng, and Q. Huang. 2018. Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irr. Sci. 36:61-74.
99. Zhang, M., L. Duan, X. Tian, Z. He, J. Li, B. Wang, and Z. Li. 2007. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J. Plant Physiol. 164:709-717.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72268-
dc.description.abstract摘要
甘藍(Brassica oleracea L. var. capitata)為臺灣民生消費市場中不可或缺的蔬菜,平地甘藍產區之產季適逢降雨量較少月份,近年氣候變遷使缺水日益頻繁,農業灌溉用水因而受限,期能降低農業灌溉水量,並維持商品價值。本研究以甘藍‘初秋’為試驗材料,調查其於不同斷水日數、介質體積含水量(volumetric water content, VWC)範圍與作物需水量(crop water requirement, CWR)灌溉率處理下之外葉生理變化以及葉球鮮重與品質,探討節水灌溉指標。於甘藍葉球形成期進行斷水日數試驗,分別斷水4、8、12、16、20天,結束後復水;斷水4天時椰碳土介質VWC降至30%,之後復水24天採收,其葉球鮮重與正常供水組相同;而在斷水12天後,椰碳土VWC降至15%,外葉SPAD讀值顯著上升,其能反應作物面臨高強度水分逆境。在甘藍葉球充實期,於不同日期斷水不同天數;斷水4天組之泥炭土介質VWC皆降至30%以下,復水後葉球鮮重與正常供水組無顯著差異。自葉球形成期至採收,於不同發育時期均斷水僅4日,則葉球鮮重於各組間無顯著差異,而葉球硝酸鹽與抗壞血酸含量以正常供水組顯著低於所有處理。若在葉球充實期,每2天以灌溉率CWR 100%、90%、80%、70%、60%與50%處理,所有處理之泥炭土VWC在全期皆維持於50%以上,且葉球鮮重間皆無差異,但乾物率以CWR 50%組為顯著最高,葉球硝酸鹽與抗壞血酸含量以灌溉率CWR 100%組最低。故進一步在夏秋季葉球形成期,以灌溉率CWR 100%、60%、50%、40%、30%、20%處理;灌溉率等於及低於CWR 30%組之泥炭土VWC在第12天後小於50%,且葉球鮮重、球寬與硝酸鹽含量皆顯著較低,但官能品評之脆度、纖維度、甜味、辣味、苦味及菜味則無顯著差異,故灌溉率應不低於CWR 40%。於葉球形成期至採收,將泥炭土VWC維持在60%以上、60%~50%、50%~40%與40%~30%,以及在VWC連續4天以上於50%~40%與40%~30%時分別做復水處理;各組之SPAD讀值、Fv/Fm與NDVI分別在第20天、第6天、第10天開始出現顯著差異,其中以VWC 40%~30%組之葉球鮮重、球高、球寬、中心柱長為各處理中最低,而側邊葉球緊實度則以VWC 50%~40%之復水組與VWC 40%~30%之復水組皆為最低。自前兩試驗中分別選出最佳處理,於冬春季葉球形成期測試不同灌溉處理之差異,試驗期間VWC 50%~40%組之泥炭土VWC變化數值及葉球相關參數皆與CWR 60%、CWR 45%相近,而VWC 40%~30%組於處理期間之泥炭土VWC、葉球鮮重與葉球形態參數為所有處理中最低,但葉球內含抗壞血酸、總鹽與可溶性固形物含量較高。綜之,溫室泥炭土甘藍栽培,應以CWR 50%~40%為依據,進行節水灌溉,且避免泥炭土VWC低於40%以下超過連續4天,雖然水分利用效率未提高,但能節省約30%之灌溉水量,且維持葉球產量與品質。
zh_TW
dc.description.abstractAbstract
Cabbage (Brassica oleracea L. var. capitata) is one of the important essential vegetable crops in Taiwan. Growth season in production area of lowland cabbage is relatively low in precipitation. Climate change causes precipitation reduction year by year and the agricultural irrigation water is limited. It is expected to lower the application of irrigation amount with good product quality and raise the crop water use efficiency (WUE). In this thesis, cabbage ‘KY cross’ was used as experimental material. The physiology of spread leaves and the yield and quality of leafy head under irrigation based on the range of medium volumetric water content (VWC) and crop water requirement (CWR) were investigated to select useful index for water saving irrigation. From initial head formation to harvest, VWC will drop to below 30% after only 4 days of water dis-supply. But after re-supply water for 24 days, fresh weight of leafy head would be insignificantly different with the control. On the 12th day of water dis-supply, VWC dropped to below 15% and SPAD value significantly raised up. SPAD value could reflect plant status under serious water deficit stress. From head formation to harvest, VWC dropped to below 30% after any 4 days of water dis-supply. After re-water, fresh weight of leafy head was not significantly different with the control. Four days of water dis-supply showed no effect on leafy head fresh weight. Nitrate and ascorbic acid contents in leafy head of control are significantly lower than any 4-days water dis-supply treatments from head formation to harvest. From head filling to harvest, irrigation were based on CWR 100%~50% per 2 days. In all treatments, VWC would maintain at higher than 50% and leafy head showed no significant difference with the control. Dry matter in CWR 50% treatment was the highest, while nitrate and ascorbic acid contents in CWR 100% the lowest. From head formation to harvest, irrigation was further based on CWR 100%, 60%, 50%, 40%, 30% and 20% per 2 days. In CWR 30% treatment, VWC dropped to below 50% after 12th day and fresh weight and equatorial diameter of leafy head were significantly lower. In organoleptic evaluation, crispy, firmness, sweetness, spice, bitterness and odd flavor showed no difference among all treatments. Hence, CWR 40% was suggested as the lowest irrigation rate. From initial head formation to harvest, with maintaining VWC in specific ranges of >60%, 60%~50%, 50%~40%, 40%~30%, re-water to field capacity after 4 days of 40%~30%, and re-water to field capacity after 4 days of 50%~40%. SPAD value, Fv/Fm and NDVI began to show significant difference among all treatments after 20th, 6th, 10th days, respectively. Leafy head fresh weight, polar diameter, equatorial diameter and core length were the lowest in VWC 30%~40% treatment. When water was re-supplied to the field capacity after 4 days of both VWC value 50%~40% and VWC 40%~30%, the head side firmness was the lowest. Hence, VWC 50%~40% was suggested as the lowest irrigation rate. The best treatments in previous trials, irrigation rates of CWR 45% and VWC 50%~40%, along with CWR 60%, CWR 35%, VWC 60%~50%, VWC 40%~30%, were applied to confirm the effect and efficiency. Medium VWC variation and leafy head shape index of VWC 50%~40% treatment had similar trends with those of CWR 60% and CWR 45%. VWC 40%~30% had the lowest VWC, fresh weight and shape index of leafy head among all treatments. In conclusion, cabbage cultivated with peat medium in the green house should irrigate based on CWR 50%~40% and avoid peat VWC below 40% continuously longer than 4 days. Although the water use efficiency of this practice did not increase, it could save about 30% irrigation water with maintaining fresh weight and quality of leafy head.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:32:20Z (GMT). No. of bitstreams: 1
ntu-107-R04628132-1.pdf: 2904820 bytes, checksum: 96ef56acc382bed8e92f0c0ec39a837f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
誌謝...i
中文摘要...ii
英文摘要...iv
目錄...vi
圖目錄...viii
表目錄...xi
第一章 前言...1
第二章 前人研究
一、 甘藍概述...2
二、 節水灌溉模式之建立...3
三、 節水灌溉對甘藍之影響...8
四、 植物缺水逆境下之反應...10
第三章 材料方法
一、 育苗...14
二、 試驗栽培曆與栽培條件...14
三、 試驗處理項目...16
四、 試驗處理項目...19
第四章 結果
一、 秋冬季甘藍葉球形成期斷水日數試驗...23
二、 冬季甘藍葉球充實期斷水時間點試驗...24
三、 冬春季甘藍葉球形成期斷水時間點試驗...24
四、 春夏季甘藍葉球充實期作物需水量灌溉率試驗...25
五、 夏秋季甘藍葉球形成期作物需水量灌溉率試驗...26
六、 冬季甘藍葉球形成期介質體積含水量範圍試驗...27
七、 冬春季甘藍葉球形成期灌溉率試驗...31
第五章 討論...36
第六章 結論...47
參考文獻...48
dc.language.isozh-TW
dc.subject節水灌溉zh_TW
dc.subject介質體積含水量zh_TW
dc.subject作物需水量zh_TW
dc.subject水分利用效率zh_TW
dc.subject產量zh_TW
dc.subjectyielden
dc.subjectvolumetric water content (VWC)en
dc.subjectcrop water requirement (CWR)en
dc.subjectwater use efficiency (WUE)en
dc.subjectwater-saving irrigationen
dc.title甘藍節水灌溉之研究zh_TW
dc.titleStudy on water-saving irrigation of cabbage(Brassica oleracea L. var. capitata)en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雯如(Wen-Ju Yang),林淑怡(Shu-I Lin)
dc.subject.keyword節水灌溉,介質體積含水量,作物需水量,水分利用效率,產量,zh_TW
dc.subject.keywordwater-saving irrigation,volumetric water content (VWC),crop water requirement (CWR),water use efficiency (WUE),yield,en
dc.relation.page108
dc.identifier.doi10.6342/NTU201803705
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved