Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72264
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor冀宏源(Hung-Yuan Chi)
dc.contributor.authorMin-Yu Koen
dc.contributor.author柯旻佑zh_TW
dc.date.accessioned2021-06-17T06:32:07Z-
dc.date.available2028-12-31
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation1. Goodman, L.S., M.M. Wintrobe, and et al., Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Assoc, 1946. 132: p. 126-32.
2. Deans, A.J. and S.C. West, DNA interstrand crosslink repair and cancer. Nat Rev Cancer, 2011. 11(7): p. 467-80.
3. Chen, C.-H., Development of Credible Molecular Probes to Identify Pregnenolone-Binding Proteins and Site-Selectively Alkylate G-Quadruplex DNA, in Department of Chemistry, College of Science. 2016, National Taiwan University: Doctoral Dissertation.
4. Mukherjee, S., A. Guainazzi, and O.D. Scharer, Synthesis of structurally diverse major groove DNA interstrand crosslinks using three different aldehyde precursors. Nucleic Acids Res, 2014. 42(11): p. 7429-35.
5. Clauson, C., O.D. Scharer, and L. Niedernhofer, Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol, 2013. 5(10): p. a012732.
6. Lopez-Martinez, D., C.C. Liang, and M.A. Cohn, Cellular response to DNA interstrand crosslinks: the Fanconi anemia pathway. Cell Mol Life Sci, 2016. 73(16): p. 3097-114.
7. Li, X. and W.D. Heyer, Homologous recombination in DNA repair and DNA damage tolerance. Cell Res, 2008. 18(1): p. 99-113.
8. Hashimoto, S., H. Anai, and K. Hanada, Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ, 2016. 38: p. 9.
9. Yun, M.H. and K. Hiom, CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature, 2009. 459(7245): p. 460-3.
10. Brandsma, I. and D.C. Gent, Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr, 2012. 3(1): p. 9.
11. Escribano-Diaz, C., et al., A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell, 2013. 49(5): p. 872-83.
12. Cruz-Garcia, A., A. Lopez-Saavedra, and P. Huertas, BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep, 2014. 9(2): p. 451-9.
13. Densham, R.M., et al., Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat Struct Mol Biol, 2016. 23(7): p. 647-55.
14. Isono, M., et al., BRCA1 Directs the Repair Pathway to Homologous Recombination by Promoting 53BP1 Dephosphorylation. Cell Rep, 2017. 18(2): p. 520-532.
15. Zhang, F., et al., PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol, 2009. 19(6): p. 524-9.
16. Prakash, R., et al., Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol, 2015. 7(4): p. a016600.
17. Hartford, S.A., et al., Interaction with PALB2 Is Essential for Maintenance of Genomic Integrity by BRCA2. PLoS Genet, 2016. 12(8): p. e1006236.
18. Nepomuceno, T.C., et al., The Role of PALB2 in the DNA Damage Response and Cancer Predisposition. Int J Mol Sci, 2017. 18(9).
19. Zhao, W., et al., BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature, 2017. 550(7676): p. 360-365.
20. Li, J., et al., DSS1 is required for the stability of BRCA2. Oncogene, 2006. 25(8): p. 1186-94.
21. Zhao, W., et al., Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Mol Cell, 2015. 59(2): p. 176-87.
22. Maizels, N. and L.T. Gray, The G4 genome. PLoS Genet, 2013. 9(4): p. e1003468.
23. Murat, P. and S. Balasubramanian, Existence and consequences of G-quadruplex structures in DNA. Curr Opin Genet Dev, 2014. 25: p. 22-9.
24. Bochman, M.L., K. Paeschke, and V.A. Zakian, DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet, 2012. 13(11): p. 770-80.
25. Kelland, L.R., Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics--current status and future prospects. Eur J Cancer, 2005. 41(7): p. 971-9.
26. Balasubramanian, S., L.H. Hurley, and S. Neidle, Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov, 2011. 10(4): p. 261-75.
27. Hansel-Hertsch, R., et al., G-quadruplex structures mark human regulatory chromatin. Nat Genet, 2016. 48(10): p. 1267-72.
28. Kwok, C.K. and C.J. Merrick, G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol, 2017. 35(10): p. 997-1013.
29. Hansel-Hertsch, R., M. Di Antonio, and S. Balasubramanian, DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol, 2017. 18(5): p. 279-284.
30. Biffi, G., et al., Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues. PLoS One, 2014. 9(7): p. e102711.
31. Incles, C.M., et al., A G-quadruplex telomere targeting agent produces p16-associated senescence and chromosomal fusions in human prostate cancer cells. Mol Cancer Ther, 2004. 3(10): p. 1201-6.
32. Muller, S., et al., Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells. Org Biomol Chem, 2012. 10(32): p. 6537-46.
33. Fujiwara, N., et al., TMPyP4, a Stabilizer of Nucleic Acid Secondary Structure, Is a Novel Acetylcholinesterase Inhibitor. PLoS One, 2015. 10(9): p. e0139167.
34. Chang, C.C., et al., A novel carbazole derivative, BMVC: a potential antitumor agent and fluorescence marker of cancer cells. Chem Biodivers, 2004. 1(9): p. 1377-84.
35. Chang, C.C., et al., Investigation of spectral conversion of d(TTAGGG)4 and d(TTAGGG)13 upon potassium titration by a G-quadruplex recognizer BMVC molecule. Nucleic Acids Res, 2007. 35(9): p. 2846-60.
36. Chou, Y.S., et al., Photo-induced antitumor effect of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide. Biomed Res Int, 2013. 2013: p. 930281.
37. Alexandrov, L.B., et al., Signatures of mutational processes in human cancer. Nature, 2013. 500(7463): p. 415-21.
38. Stordal, B., et al., BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation. Mol Oncol, 2013. 7(3): p. 567-79.
39. Elstrodt, F., et al., BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer Res, 2006. 66(1): p. 41-5.
40. Pihlak, R., J.W. Valle, and M.G. McNamara, Germline mutations in pancreatic cancer and potential new therapeutic options. Oncotarget, 2017. 8(42): p. 73240-73257.
41. Xu, H., et al., Up-regulation of the interferon-related genes in BRCA2 knockout epithelial cells. J Pathol, 2014. 234(3): p. 386-97.
42. Guzman, C., et al., ColonyArea: an ImageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One, 2014. 9(3): p. e92444.
43. Tseng, T.Y., et al., In-cell optical imaging of exogenous G-quadruplex DNA by fluorogenic ligands. Nucleic Acids Res, 2013. 41(22): p. 10605-18.
44. Chan, Y.C., et al., Direct visualization of the quadruplex structures in human chromosome using FRET: application of quadruplex stabilizer and duplex-binding fluorophore. Biosens Bioelectron, 2013. 47: p. 566-73.
45. Tseng, T.-Y., et al., A Fluorescent Anti-Cancer Agent, 3,6-bis(1-methyl-4-vinylpyridinium) Carbazole Diiodide, Stains G-Quadruplexes in Cells and Inhibits Tumor Growth. Current Topics in Medicinal Chemistry, 2015. 15(19): p. 1964-1970.
46. McLuckie, K.I., et al., G-quadruplex DNA as a molecular target for induced synthetic lethality in cancer cells. J Am Chem Soc, 2013. 135(26): p. 9640-3.
47. Siddiqui-Jain, A., et al., Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11593-8.
48. Halder, K., M. Benzler, and J.S. Hartig, Reporter assays for studying quadruplex nucleic acids. Methods, 2012. 57(1): p. 115-21.
49. Bay, D.H., et al., Identification of G-quadruplex structures that possess transcriptional regulating functions in the Dele and Cdc6 CpG islands. BMC Mol Biol, 2017. 18(1): p. 17.
50. Cogoi, S. and L.E. Xodo, G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res, 2006. 34(9): p. 2536-49.
51. Yang, D. and L.H. Hurley, Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleosides Nucleotides Nucleic Acids, 2006. 25(8): p. 951-68.
52. Henderson, A., et al., Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res, 2014. 42(2): p. 860-9.
53. Lam, E.Y., et al., G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun, 2013. 4: p. 1796.
54. Chen, B.J., et al., Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int J Biol Sci, 2014. 10(10): p. 1084-96.
55. Zimmer, J., et al., Targeting BRCA1 and BRCA2 Deficiencies with G-Quadruplex-Interacting Compounds. Mol Cell, 2016. 61(3): p. 449-460.
56. Xu, H., et al., CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat Commun, 2017. 8: p. 14432.
57. Livraghi, L. and J.E. Garber, PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med, 2015. 13: p. 188.
58. Audeh, M.W., et al., Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. The Lancet, 2010. 376(9737): p. 245-251.
59. Sulai, N.H. and A.R. Tan, Development of poly(ADP-ribose) polymerase inhibitors in the treatment of BRCA-mutated breast cancer. Clin Adv Hematol Oncol, 2018. 16(7): p. 491-501.
60. Lord, C.J. and A. Ashworth, Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med, 2013. 19(11): p. 1381-8.
61. Ray Chaudhuri, A., et al., Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature, 2016. 535(7612): p. 382-7.
62. Rhodes, D. and H.J. Lipps, G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res, 2015. 43(18): p. 8627-37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72264-
dc.description.abstract去氧核醣核酸 (DNA) 之間的鏈間交聯 (interstrand cross-link, ICL) 是一種極具細胞毒性的DNA損傷。當雙股DNA被相互嵌合無法解開時,容易影響後續DNA複製、轉錄等重要細胞生理現象,最終導致DNA的雙股斷裂 (double-strand break, DSB)。氮芥類化合物 (nitrogen mustard) 藉由與DNA烷化反應造成鏈間交聯,如今被廣泛運用在癌症的化療藥物上。在此研究中我分析由陳昭岑教授實驗室所合成的新興烷化試劑COOH-SW相關細胞實驗,並且發現當同源修復 (homology-directed repair, HDR) 的相關重要基因如BRCA1與BRCA2缺陷時,細胞會對於COOH-SW更加敏感。
除此之外,陳昭岑教授實驗室更進一步合成COOH-SW的衍生物:BMVC-SW,其含有兩個攻擊端 (warhead),一個是承接COOH-SW的烷化攻擊端,另一個則是一種鳥嘌呤四聯體 (G-quadruplex, G4) 的配體 (ligand) BMVC (3,6-bis (1-methyl-4-vinylpyridinium iodide) carbazole)。在BMVC-SW的相關細胞實驗分析中,利用螢光顯微鏡觀察到BMVC-SW可以穩定地嵌合在細胞核內的DNA上。在許多種癌症細胞毒性測試中,發現BMVC-SW相較於COOH-SW、BMVC以及兩者共同混合皆具有更高的細胞毒性。最重要的是BMVC-SW也和COOH-SW相似,當細胞同源修復缺陷時會對於BMVC-SW更為敏感。整體來說,在與陳昭岑教授實驗室的合作研究中,我們發現BMVC-SW比個別烷化攻擊端更具有細胞毒性,而且可以針對性地毒殺BRCA基因缺陷 (BRCA-deficient, BRCAness) 相關癌症細胞,並期望有未來更深廣的臨床相關應用。
zh_TW
dc.description.abstractDNA interstrand cross-link (ICL) is one of the most cytotoxic lesions among many kinds of DNA damages. ICLs block essential cellular processes such as DNA replication and transcription, and thus generate DNA double-strand breaks (DSBs). It has been well documented that nitrogen mustards induce ICLs by DNA alkylation on both strands. Here we introduced a new DNA alkylating agent COOH-SW, generated by Professor Chao-Tsen Chen’s lab. Interestingly, my cell-based studies showed that cancer cells defective in a homology-directed repair (HDR), such as BRCA1/2-deficient cells, are sensitive to COOH-SW.
Furthermore, Professor Chen’s lab further synthesized a novel DNA alkylator that combines alkylating warhead of COOH-SW and G-quadruplex (G4) ligand 3,6-bis (1-methyl-4-vinylpyridinium iodide) carbazole (BMVC) named BMVC-SW. Cell-based fluorescent images evidenced that BMVC-SW steadily bound to nucleus DNA. Moreover, I found BMVC-SW had more cytotoxicity than COOH-SW, BMVC, and combination treatment of both together in different types of cancers. Importantly, similar to COOH-SW, my cell-based studies showed that cancer cells defective in a homology-directed repair are sensitive to BMVC-SW. Thus, our collaborative research demonstrated BMVC-SW possesses more cytotoxicity than DNA alkylator alone and reveals novel selective chemicals toward BRCA-deficient (BRCAness) cancers.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:32:07Z (GMT). No. of bitstreams: 1
ntu-107-R05b46003-1.pdf: 2189025 bytes, checksum: db9fd6e5381569eb37dc6c4e2f989f4a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 1
中文摘要 2
Abstract 4
Chapter 1 Introduction 9
1-1 DNA interstrand crosslinks (ICLs) 9
1-2 Crosslinking agents and chemotherapies 9
1-2-1 A novel alkylating agent COOH-SW 10
1-3 DNA repair of ICLs 10
1-4 G-quadruplex (G4) 11
1-5 G4 ligands and therapeutic application 12
1-6 Design of the G4-directing alkylating agent BMVC-SW 12
1-7 Motivation of my thesis study 13
Chapter 2 Materials and Methods 14
2-1 Chemicals 14
2-2 Cell lines and culture conditions 14
2-3 Immunoblotting 15
2-4 Fluorescence microscopy 17
2-5 Short-term cell viability assay 17
2-6 Long-term clonogenic survival assay 18

Chapter 3 Results 19
3-1 DNA alkylator COOH-SW specifically kills BRCA- deficient human cancer cells 19
3-2 G4-directing DNA alkylator, BMVC-SW, steadily targets on cell nucleus 20
3-3 BMVC-SW shows a higher cytotoxicity than COOH-SW and G4 ligand BMVC 20
3-4 BMVC-SW exhibits a higher cytotoxicity than COOH-SW and G4 ligand BMVC added together 21
3-5 BMVC-SW specifically kills BRCA- deficient cancer cells 22
Chapter 4 Conclusion and Discussion 23
4-1 Summary of key findings 23
4-2 Discussion 23
4-2-1 Further examine the specific targeting of BMVC-SW toward G4-DNAs 23
4-2-2 Implication of COOH-SW and BMVC-SW for cancer therapy 24
Figures 26
References 38
dc.language.isoen
dc.title利用DNA烷化試劑以及其衍生物標的BRCA基因缺陷癌細胞zh_TW
dc.titleTargeting BRCAness Cancer Cells with DNA Alkylator and Its Derivativesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昭岑(Chao-Tsen Chen),侯明宏(Ming-Hon Hou)
dc.subject.keyword去氧核醣核酸鏈間交聯,DNA烷化試劑,鳥嘌呤四聯體,BRCA基因,標靶治療,zh_TW
dc.subject.keywordDNA interstrand crosslink,DNA alkylator,G-quadruplex,BRCA,Target therapy,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201803557
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved