請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72246
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳耀銘 | |
dc.contributor.author | Hang Xu | en |
dc.contributor.author | 徐杭 | zh_TW |
dc.date.accessioned | 2021-06-17T06:31:07Z | - |
dc.date.available | 2022-08-19 | |
dc.date.copyright | 2018-08-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-16 | |
dc.identifier.citation | [1] Erdal Irmak, Melike Selcen Ayaz, Suudan Gokce Gok, and Almula Busra Sahin, 'A survey on public awareness towards renewable energy in Turkey,' IEEE ICRERA 2014, pp. 932-937.
[2] Shijia Zhao, Fuquan Zhao, and Zongwei Liu, 'The current status, barriers and development strategy of new energy vehicle industry in China,' IEEE ICITM 2017, pp. 96-97. [3] Bing gang Cao, 'Current Progress of Electric Vehicle Development in China,' Journal of Xi'an Jiao tong University, vol.41, no.1, pp. 114-117, Jan.2007. [4] B. Lasseter, 'Microgrids [distributed power generation],' IEEE Power Engineering Society Winter Meeting 2001, pp.146-149 [5] Wei Jiang and Yu Zhang, 'Load sharing techniques in hybrid power systems for DC micro-grids,' IEEE Asia-Pacific Power and Energy Engineering Conference 2011, pp. 1-4. [6] Yufeng Lin and Jin Zhong, 'Converter controller design methods for wind turbine systems in the DC micro grid,' IEEE Power and Energy Society General Meeting 2008, pp. 1-6. [7] R.S. Bhatia, S.P. Jain, Dinesh Kumar Jain, and B. Singh, 'Battery Energy Storage System for Power Conditioning of Renewable Energy Sources,' IEEE International Conference on Power Electronics and Drives Systems 2005, pp. 501-506. [8] M. Maskey, M. Parten, D. Vines,and T. Maxwell, 'An intelligent battery management system for electric and hybrid electric vehicles,' IEEE 49th Vehicular Technology Conference 1999, pp. 1389-1391. [9] Qiaoyun Zhao and Zhongdong Yin, 'Battery energy storage research of photovoltaic power generation system in micro-grid,' IEEE 5th International Conference on Critical Infrastructure (CRIS)2010, pp. 1-4. [10] Z. Zheng, K. Wang, L. Xu, and Y. Li, 'A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles,' IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3537-3546, July 2014. [11] T. Morstyn, M. Momayyezan, B. Hredzak, and V. G. Agelidis, 'Distributed Control for State-of-charge Balancing Between the Modules of a Reconfigurable Battery Energy Storage System,' IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7986-7995, Nov. 2016. [12] G. Gunlu, 'Dynamically Reconfigurable Independent Cellular Switching Circuits for Managing Battery Modules,' IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 194-201, March 2017. [13] Chun-Yu Yang, 'Voltage Balance Method for Reconfigurable Battery Arrays in Multilevel Inverter Applications,' M.S. thesis, Dept. Elect. Eng., Notional Taiwan Univ., Taipei, MA, 2017.. [14] Lithium Ion NCR18650B Data Sheet, Panasonic, 2012. [15] Y. Cao, R. C. Kroeze and P. T. Krein, 'Multi-timescale Parametric Electrical Battery Model for Use in Dynamic Electric Vehicle Simulations,' IEEE Transactions on Transportation Electrification, vol. 2, no. 4, pp. 432-442, Dec. 2016. [16] E. Raszmann, K. Baker, Y. Shi, and D. Christensen, 'Modeling Stationary Lithium-ion Batteries for Optimization and Predictive Control,' IEEE PECI 2017, pp. 1-7. [17] X. Zhang, Y. Wang, and Z. Chen, 'Model-based Remaining Discharge Energy Estimation of Lithium-ion Batteries,' IEEE ICCAR 2017, pp. 510-513. [18] M. Chen and G. A. Rincon-Mora, 'Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance,' IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504-511, June 2006. [19] V. Sangwan, A. Sharma, R. Kumar, and A. K. Rathore, 'Equivalent Circuit Model Parameters Estimation of Li-ion battery: C-rate, SOC and Temperature Effects,' IEEE PEDES 2016, pp. 1-6. [20] Sibi Krishnan K., P. Pathiyil, and Sunitha R., 'Generic Battery Model Covering Self-discharge and Internal Resistance Variation,' IEEE ICPS 2016, pp. 1-5. [21] S. Chen, A. Saber, and T. Khandelwal, 'General Battery Modeling and Simulation Using Non-linear Open Circuit Voltage in Power System Analysis,' IEEE PESGM 2016, pp. 1-5. [22] A. A. H. Hussein and I. Batarseh, 'An Overview of Generic Battery Models,' IEEE PES 2011, pp. 1-6. [23] M. Borage, S. Tiwari, and S.Kotaiah, 'Constant-current, constant-voltage half-bridge resonant power supply for capacitor charging,' IEEE Proceedings - Electric Power Applications, vol.153, no.3, pp.343-347, 1 May 2006. [24] Liang-Rui Chen, 'Design of Duty-Varied Voltage Pulse Charger for Improving Li-Ion Battery-Charging Response,' IEEE Transactions on Industrial Electronics, vol.56, no.2, pp.480-487, Feb.2009 [25] R.C. Cope and Y. Podrazhansky, 'The art of battery charging,' IEEE Fourteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference 1999, pp.233-235. [26] SS Zhang,'The effect of the charging protocol on the cycle life of a Li-ion battery,' Journal of power sources, Volume 161,Issue 2,27 October 2006, pp. 1385-1391. [27] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, 'State-of-the-art of Battery State-of-charge Determination,' Measurement Science and Technology, vol. 16, no. 12, pp. R93-R110, 2005. [28] T. A. Stuart and W. Zhu, 'Fast Equalization for Large Lithium Ion Batteries,' IEEE Aerospace and Electronic Systems Magazine, vol. 24, no. 7, pp. 27-31, July 2009. [29] X. J. Zhang, P. D. Liu, and D. R. Wang, 'The Design and Implementation of Smart Battery Management System Balance Technology,' Journal of Convergence Information Technology, vol. 6, No. 5, pp. 108-116, May 2011. [30] S. W. Moore and P. J. Schneider, 'A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems,' SAE World Congress 2001, pp. 1-5. [31] M. J. Isaacson, R. P. Hollandsworth, P. J. Giampaoli, F. A. Linkowsky, A. Salim, and V. L. Teofilo, 'Advanced Lithium Ion Battery Charger,' IEEE BCAA 2000, pp. 193-198. [32] S. H. Park, T. S. Kim, J. S. Park, G. W. Moon, and M. J. Yoon, 'A New Battery Equalizer Based on Buck-boost Topology,' IEEE ICPE 2007, pp. 962-965. [33] C. S. Moo, Y. C. Hsieh, I. S. Tsai, and J. C. Cheng, 'Dynamic Charge Equalisation for Series-connected Batteries,' IEEE Proceedings - Electric Power Applications, vol. 150, no. 5, pp. 501-505, Sept. 2003. [34] H. S. Park, C. E. Kim, C. H. Kim, G. W. Moon, and J. H. Lee, 'A Modularized Charge Equalizer for an HEV Lithium-Ion Battery String,' IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1464-1476, May 2009. [35] A. M. Imtiaz, F. H. Khan, and H. Kamath, 'A Low-cost Time Shared Cell Balancing Technique for Future Lithium-ion Battery Storage System Featuring Regenerative Energy Distribution,' IEEE APEC 2011, pp. 792-799. [36] Y. S. Lee, C. Y. Duh, G. T. Chen, and S. C. Yang, 'Battery Equalization Using Bi-directional Cuk Converter in DCVM Operation,' IEEE PESC 2005, pp. 765-771. [37] C. H. Kim, M. Y. Kim, and G. W. Moon, 'Individual Cell Equalizer Using Active-clamp Flyback Converter for Li-ion Battery Strings in an Electric Vehicle,' IEEE VPPC 2012, pp. 327-332. [38] Y. S. Lee, C. E. Tsai, Y. P. Ko, and M. W. Cheng, 'Charge Equalization Using Quasi-resonant Converters in Battery String for Medical Power Operated Vehicle Application,' IEEE ECCE Asia 2010, pp. 2722-2728. [39] L. Maharjan, S. Inoue, H. Akagi, and J. Asakura, 'State-of-charge (SOC)-balancing Control of a Battery Energy Storage System Based on a Cascade PWM Converter,' IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1628-1636, June 2009. [40] T. Gottwald, Z. Ye, and T. Stuart, 'Equalization of EV and HEV Batteries with a Ramp Converter,' IEEE PET 1996, pp. 65-69. [41] J. H. Kim, M. S. Kang, S. B. Oh, and E. H. Kim, 'New Control Scheme of Lithium-polymer Battery Units Using Single Phase Multi-level Converter,' IEEE ECCE Asia 2011, pp. 2997-3000. [42] dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Data Sheet, Microchip, 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72246 | - |
dc.description.abstract | 本論文提出了一種可重組電池陣列(Reconfigurable Battery Array,RBA)應用於直流-直流轉換器的電池電壓平衡控制方法。對電池模組而言,由於可重組電池陣列中電池與電池之間固有的差異性,且電池模組工作在不同模式時,輸出/輸入功率差異較大,很容易造成電池電壓不平衡的狀況。可重組電池陣列中的單個電池模組,可以含有三種不同的工作模式:恒導通模式,PWM模式,以及旁路模式。應用於RBA直流-直流轉換器時,處於恒導通模式的電池模組放電/充電速度最快,處於PWM模式的電池模組放電/充電速度其次,而處於旁路模式的電池模組則無放電/充電速度的操作。當各個電池模組持續操作在單一工作模式下時,就會造成電池組間電壓不平衡現象,甚至出現過度放電/充電的狀況,對電池造成永久性損害。為了解決RBA直流-直流轉換器中,電池電壓不平衡問題,本論文提出利用責任比(duty ratio),推測出各個電池組相對電壓的方法。然後根據相對電壓的大小,讓各個電池模組改變工作模式,來改變電池組的放電/充電速度,從而達到電池平衡的效果。
本論文提出的方法,不論在平衡初始電壓下,還是不平衡初始電壓下,通過一定時間的放電/充電,都能達到電池電壓平衡的效果。此外,本論文提出的方法優點在於利用電路中固有的放電模式輸出電壓偵測電路,和充電模式輸入電流偵測電路,便能獲得足夠的控制資訊,不需要增加額外的偵測電路。本論文中,首先會介紹RBA直流-直流轉換器的電路架構和操作原理。接著說明責任比偵測平衡法的控制流程。最後基於含4個電池模組的可重組電池陣列系統,對於直流-直流轉換器的應用,進行模擬與實作。並驗證本論文所提出之電池電壓平衡方法的正確性。 | zh_TW |
dc.description.abstract | A voltage balance method for the Reconfigurable Battery Array (RBA) for DC-DC converter applications is proposed in this thesis. For battery modules, due to the inherent varieties between batteries in RBA and the different output/input power of working modes, the voltage imbalance occurs easily. The battery module has three working modes: enable mode, PWM mode, and bypass mode. When the RBA DC-DC converter is operated under discharging/charging state, the battery module in enable mode has the fastest discharging/charging speed, followed by the one in PWM mode. For the Bypass mode, there is no discharging/charging operation. The different working modes have the different discharging/charging speed, which can easily cause permanent damage to the battery. In order to solve the battery imbalance problem of the RBA DC-DC converter, this thesis proposes a method of detecting the relative voltage of the battery cells according to the duty ratio. Then, according to the relative voltages, make these battery modules work in different modes with various discharging/charging speeds.
The method proposed in this thesis can achieve the battery equalization under the conditions of both balanced or unbalanced initial voltages. In addition, no additional voltage or current sensors are needed. In this thesis, the circuit structure and operation principle of the RBA DC-DC converter will be introduced. Then, the control flow chart of the proposed duty ratio sensing balabce(DSB) method will be illustrated. Finally, the computer simulation and hardware experimental results of the prototype RBA DC-DC converter with four battery modules are built and tested to verify the performance of the proposed DSB method. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:31:07Z (GMT). No. of bitstreams: 1 ntu-107-R05921093-1.pdf: 3453825 bytes, checksum: eb9b1242242b335e0d387af996eb44f7 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文大綱 2 第二章 可重組電池陣列系統 3 2.1 系統介紹 3 2.2 電池的特性 5 2.2.1 電池的放電特性 5 2.2.2 電池的充電特性 6 2.3 電池平衡方法 7 2.3.1 電池電量狀態評估 7 2.3.2 外加耗能元件型電壓平衡法 8 2.3.3 外加儲能元件型電壓平衡法 8 2.3.4 外加變壓器型電壓平衡法 9 2.3.5 外加轉換器型電壓平衡法 9 2.3.6 多電壓偵測電壓平衡方法 9 2.3.7 移轉式電壓平衡方法 9 2.3.8 單電壓偵測電壓平衡方法 10 第三章 可重組電池陣列之電池電壓平衡控制方法 11 3.1 RBA直流-直流轉換器 11 3.1.1 放電模式 11 3.1.2 充電模式 13 3.2 DSB電池電壓平衡控制 16 3.2.1 放電模式之電池電壓平衡 16 3.2.2 充電模式之電池電壓平衡 19 3.2.3 DSB電池電壓平衡法的使用條件 21 4.1 硬體電路設計 22 4.1.1 RBA直流-直流轉換器規格 22 4.1.2 功率級電路設計 23 4.1.3 控制級電路設計 25 4.2 控制程式撰寫 26 4.2.1 放電平衡程式 27 4.2.2 充電平衡程式 31 第五章 電腦模擬與實驗結果 36 5.1 測試環境 36 5.2 直流-直流轉換器的放電平衡 37 5.2.1 模擬結果 38 5.2.2 實驗結果 41 5.3 直流-直流轉換器的充電平衡 47 5.3.1 模擬結果 48 5.3.2 實驗結果 50 第六章 結論與未來發展 56 6.1 結論 56 6.2 未來發展 57 參考文獻 58 | |
dc.language.iso | zh-TW | |
dc.title | 應用於直流-直流轉換器之可重組電池陣列電壓平衡方法 | zh_TW |
dc.title | Voltage Balance Method for Reconfigurable Battery Arrays in DC-DC Converter Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳景然,李坤彥 | |
dc.subject.keyword | 電壓平衡,可重組電池陣列,RBA直流-直流轉換器,責任比偵測平衡, | zh_TW |
dc.subject.keyword | voltage balance,Reconfigurable Battery Array (RBA),RBA dc-dc converter,duty ratio sensing balance (DSB), | en |
dc.relation.page | 62 | |
dc.identifier.doi | 10.6342/NTU201803447 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。