Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72243
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明
dc.contributor.authorHsien-Ming Dingen
dc.contributor.author丁賢明zh_TW
dc.date.accessioned2021-06-17T06:30:57Z-
dc.date.available2028-12-31
dc.date.copyright2018-08-24
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[1] T. Harashina, 'Analysis of 200 free flaps,' British journal of plastic surgery, vol. 41, pp. 33-36, 1988.
[2] D. A. Hidalgo and C. S. Jones, 'The role of emergent exploration in free-tissue transfer: a review of 150 consecutive cases,' Plastic and reconstructive surgery, vol. 86, pp. 492-8; discussion 499-501, 1990.
[3] R. K. Khouri, 'Free flap surgery. The second decade,' Clinics in plastic surgery, vol. 19, pp. 757-761, 1992.
[4] M. A. Schusterman, M. J. Miller, G. P. Reece, S. S. Kroll, M. Marchi, and H. Goepfert, 'A single center's experience with 308 free flaps for repair of head and neck cancer defects,' Plastic and reconstructive surgery, vol. 93, pp. 472-8; discussion 479-80, 1994.
[5] W. Shaw, 'Microvascular free flaps: the first decade,' Clin Plast Surg, vol. 10, pp. 3-20, 1983.
[6] D. S. Soutar and I. McGregor, 'The radial forearm flap in intraoral reconstruction: the experience of 60 consecutive cases,' Plastic and reconstructive surgery, vol. 78, pp. 1-8, 1986.
[7] K.-T. Chen, S. Mardini, D. C.-C. Chuang, C.-H. Lin, M.-H. Cheng, Y.-T. Lin, et al., 'Timing of presentation of the first signs of vascular compromise dictates the salvage outcome of free flap transfers,' Plastic and reconstructive surgery, vol. 120, pp. 187-195, 2007.
[8] G. B. Irons and M. B. Wood, 'Experience with one hundred consecutive free flaps,' Annals of plastic surgery, vol. 18, pp. 17-23, 1987.
[9] C. Krag, 'Experience with transplantation of composite tissues by means of microsurgical vascular anastomoses: II. Late results and comments,' Scandinavian journal of plastic and reconstructive surgery, vol. 19, pp. 157-173, 1985.
[10] S. S. Kroll, M. A. Schusterman, G. P. Reece, M. J. Miller, G. R. Evans, G. L. Robb, et al., 'Timing of pedicle thrombosis and flap loss after free-tissue transfer,' Plastic and reconstructive surgery, vol. 98, pp. 1230-1233, 1996.
[11] T. Kubo, K. Yano, and K. Hosokawa, 'Management of flaps with compromised venous outflow in head and neck microsurgical reconstruction,' Microsurgery, vol. 22, pp. 391-395, 2002.
[12] W. Lineaweaver and H. Buncke, 'Complications of free flap transfers,' Hand clinics, vol. 2, pp. 347-351, 1986.
[13] M. Macnamara, S. Pope, A. Sadler, H. Grant, and M. Brough, 'Microvascular free flaps in head and neck surgery,' The Journal of Laryngology & Otology, vol. 108, pp. 962-968, 1994.
[14] J. Brown, J. Devine, P. Magennis, P. Sillifant, S. Rogers, and E. Vaughan, 'Factors that influence the outcome of salvage in free tissue transfer,' British Journal of Oral and Maxillofacial Surgery, vol. 41, pp. 16-20, 2003.
[15] D. T. Bui, P. G. Cordeiro, Q.-Y. Hu, J. J. Disa, A. Pusic, and B. J. Mehrara, 'Free flap reexploration: indications, treatment, and outcomes in 1193 free flaps,' Plastic and reconstructive surgery, vol. 119, pp. 2092-2100, 2007.
[16] V. Panchapakesan, P. Addison, E. Beausang, J. E. Lipa, R. W. Gilbert, and P. C. Neligan, 'Role of thrombolysis in free-flap salvage,' Journal of reconstructive microsurgery, vol. 19, pp. 523-530, 2003.
[17] X. Tenorio, A. L. Mahajan, R. Wettstein, Y. Harder, M. Pawlovski, and B. Pittet, 'Early detection of flap failure using a new thermographic device,' Journal of Surgical Research, vol. 151, pp. 15-21, 2009.
[18] C. L. Kerrigan and R. K. Daniel, 'Monitoring acute skin-flap failure,' Plastic and reconstructive surgery, vol. 71, pp. 519-524, 1983.
[19] B. F. Jones, 'A reappraisal of the use of infrared thermal image analysis in medicine,' IEEE transactions on medical imaging, vol. 17, pp. 1019-1027, 1998.
[20] J. J. May, F. N. Lukash, and C. Stirrat, 'Removable thermocouple probe microvascular patency monitor: an experimental and clinical study,' Plastic and reconstructive surgery, vol. 72, pp. 366-379, 1983.
[21] J. Baudet, J.-m. Lemaire, and J.-c. Guimberteau, 'Ten free groin flaps,' Plastic and reconstructive surgery, vol. 57, pp. 577-595, 1976.
[22] 侯春林、顧玉東,「皮瓣外科學」,上海科學技術出版社,第一版,2006。
[23] A. Zaretski, F.-C. Wei, C.-H. Lin, M.-H. Cheng, C.-K. Tsao, and C. G. Wallace, 'Anterolateral thigh perforator flaps in head and neck reconstruction,' in Seminars in plastic surgery, 2006, pp. 64.
[24] J. S. Chana, Y.-M. Chang, F.-C. Wei, Y.-F. Shen, C.-P. Chan, H.-N. Lin, et al., 'Segmental mandibulectomy and immediate free fibula osteoseptocutaneous flap reconstruction with endosteal implants: an ideal treatment method for mandibular ameloblastoma,' Plastic and reconstructive surgery, vol. 113, pp. 80-87, 2004.
[25] M. Hamdi, E. M. Weiler-Mithoff, and M. Webster, 'Deep inferior epigastric perforator flap in breast reconstruction: experience with the first 50 flaps,' Plastic and reconstructive surgery, vol. 103, pp. 86-95, 1999.
[26] M. Godina, 'Early microsurgical reconstruction of complex trauma of the extremities,' Orthopedic Trauma Directions, vol. 4, pp. 29-35, 2006.
[27] 姚建民、徐靖宏、李東平,「手足部創面皮瓣修復臨床手術圖譜」,杭州: 浙江科學技術出版社,第一版,2006。
[28] B. M. Jones and B. J. Mayou, 'The laser Doppler flowmeter for microvascular monitoring: a preliminary report,' British journal of plastic surgery, vol. 35, pp. 147-149, 1982.
[29] J. Röjdmark, P. Hedén, and U. Ungerstedt, 'Microdialysis–a new technique for free flap surveillance: methodological description,' European journal of plastic surgery, vol. 21, pp. 344-348, 1998.
[30] S. G. Pryor, E. J. Moore, and J. L. Kasperbauer, 'Implantable Doppler flow system: experience with 24 microvascular free-flap operations,' Otolaryngology—Head and Neck Surgery, vol. 135, pp. 714-718, 2006.
[31] A. Kayikçioglu, 'Two practical devices for monitoring temperature,' Plastic and reconstructive surgery, vol. 111, pp. 1778-1779, 2003.
[32] G. A. Solomon, M. J. Yaremchuk, and P. N. Manson, 'Doppler ultrasound surface monitoring of both arterial and venous flow in clinical free tissue transfers,' Journal of reconstructive microsurgery, vol. 3, pp. 39-41, 1986.
[33] L. Heller, L. S. Levin, and B. Klitzman, 'Laser Doppler flowmeter monitoring of free-tissue transfers: blood flow in normal and complicated cases,' Plastic and reconstructive surgery, vol. 107, pp. 1739-1745, 2001.
[34] J. B. Wise, M. Talmor, L. A. Hoffman, and L. B. Gayle, 'Postoperative monitoring of microvascular tissue transplants with an implantable Doppler probe,' Plastic and reconstructive surgery, vol. 105, pp. 2279-2280, 2000.
[35] R. Schön, A. Schramm, N.-C. Gellrich, W. Maier, D. Jürgen, and R. Schmelzeisen, 'Color duplex sonography for the monitoring of vascularized free bone flaps,' Otolaryngology—Head and Neck Surgery, vol. 129, pp. 71-76, 2003.
[36] A. Udesen, E. Løntoft, and S. R. Kristensen, 'Monitoring of free TRAM flaps with microdialysis,' Journal of reconstructive microsurgery, vol. 16, pp. 0101-0106, 2000.
[37] M. B. Hirigoyen, K. E. Blackwell, W. X. Zhang, L. Silver, H. Weinberg, and M. L. Urken, 'Continuous tissue oxygen tension measurement as a monitor of free-flap viability,' Plastic and reconstructive surgery, vol. 99, pp. 763-773, 1997.
[38] T. J. Galla, D. Hellekes, and A.-M. Feller, 'Differentiation between arterial and venous vessel occlusion by simultaneous measurement with laser Doppler flowmetry and photoplethysmography,' Journal of reconstructive microsurgery, vol. 15, pp. 67-72, 1999.
[39] A. Repež, D. Oroszy, and Z. M. Arnež, 'Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy,' Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 61, pp. 71-77, 2008.
[40] H. Sakurai, M. Nozaki, M. Takeuchi, K. Soejima, T. Yamaki, T. Kono, et al., 'Monitoring the changes in intraparenchymatous venous pressure to ascertain flap viability,' Plastic and reconstructive surgery, vol. 119, pp. 2111-2117, 2007.
[41] M. Mizunuma, A. Yanai, H. Seno, M. Nishida, and T. Beppu, 'Direct monitoring using an endoscope for buried flaps,' Plastic and reconstructive surgery, vol. 104, pp. 884, 1999.
[42] R. N. Lawson and M. Chughtai, 'Breast cancer and body temperature,' Canadian Medical Association Journal, vol. 88, pp. 68, 1963.
[43] R. Lawson, 'Implications of surface temperatures in the diagnosis of breast cancer,' Canadian Medical Association Journal, vol. 75, pp. 309, 1956.
[44] M. Hackett, 'The use of thermography in the assessment of depth of burn and blood supply of flaps, with preliminary reports on its use in Dupuytren's contracture and treatment of varicose ulcers,' British journal of plastic surgery, vol. 27, pp. 311-317, 1974.
[45] L. de Weerd, J. B. Mercer, and S. Weum, 'Dynamic infrared thermography,' Clinics in plastic surgery, vol. 38, pp. 277-292, 2011.
[46] T. Yamamoto, T. Todokoro, and I. Koshima, 'Handheld thermography for flap monitoring,' Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 65, pp. 1747-1748, 2012.
[47] M.-H. Yang, D. J. Kriegman, and N. Ahuja, 'Detecting faces in images: A survey,' IEEE Transactions on pattern analysis and machine intelligence, vol. 24, pp. 34-58, 2002.
[48] G. Yang and T. S. Huang, 'Human face detection in a complex background,' Pattern recognition, vol. 27, pp. 53-63, 1994.
[49] K. C. Yow and R. Cipolla, 'Feature-based human face detection,' Image and vision computing, vol. 15, pp. 713-736, 1997.
[50] T. K. Leung, M. C. Burl, and P. Perona, 'Finding faces in cluttered scenes using random labeled graph matching,' 1995.
[51] A. Lanitis, C. J. Taylor, and T. F. Cootes, 'Automatic face identification system using flexible appearance models,' Image and vision computing, vol. 13, pp. 393-401, 1995.
[52] I. Craw, D. Tock, and A. Bennett, 'Finding face features,' in European Conference on Computer Vision, pp. 92-96, 1992.
[53] L.-L. Huang, A. Shimizu, Y. Hagihara, and H. Kobatake, 'Face detection from cluttered images using a polynomial neural network,' Neurocomputing, vol. 51, pp. 197-211, 2003.
[54] L.-L. Huang, A. Shimizu, Y. Hagihara, and H. Kobatake, 'Gradient feature extraction for classification-based face detection,' Pattern Recognition, vol. 36, pp. 2501-2511, 2003.
[55] L.-L. SHEN and Z. JI, 'Gabor wavelet selection and SVM classification for object recognition,' Acta Automatica Sinica, vol. 35, pp. 350-355, 2009.
[56] T. S. Lee, 'Image representation using 2D Gabor wavelets,' IEEE Transactions on Pattern Analysis & Machine Intelligence, pp. 959-971, 1996.
[57] T. Du, K. B. Lim, G. S. Hong, W. M. Yu, and H. Zheng, '2D occluded object recognition using wavelets,' in Computer and Information Technology, 2004. CIT'04. The Fourth International Conference on, pp. 227-232, 2004.
[58] D. G. Lowe, 'Distinctive image features from scale-invariant keypoints,' International journal of computer vision, vol. 60, pp. 91-110, 2004.
[59] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, 'Speeded-up robust features (SURF),' Computer vision and image understanding, vol. 110, pp. 346-359, 2008.
[60] H. Bay, T. Tuytelaars, and L. Van Gool, 'Surf: Speeded up robust features,' in European conference on computer vision, pp. 404-417, 2006.
[61] J. Han and K.-K. Ma, 'Rotation-invariant and scale-invariant Gabor features for texture image retrieval,' Image and vision computing, vol. 25, pp. 1474-1481, 2007.
[62] S. Lee, E. Kim, and Y. Park, '3D object recognition using multiple features for robotic manipulation,' in Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 3768-3774, 2006.
[63] S. Lee, D. Jang, E. Kim, S. Hong, and J. Han, 'A real-time 3D workspace modeling with stereo camera,' in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pp. 2140-2147, 2005.
[64] D. Gossow, J. Pellenz, and D. Paulus, 'Danger sign detection using color histograms and SURF matching,' in Safety, Security and Rescue Robotics, 2008. SSRR 2008. IEEE International Workshop on, pp. 13-18, 2008.
[65] M. Tomono, '3-d object map building using dense object models with sift-based recognition features,' in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pp. 1885-1890, 2006.
[66] M. H. Asmare, V. S. Asirvadam, and L. Iznita, 'Color space selection for color image enhancement applications,' in 2009 International Conference on Signal Acquisition and Processing, pp. 208-212, 2009.
[67] Y. Tayal, R. Lamba, and S. Padhee, 'Automatic face detection using color based segmentation,' International Journal of Scientific and Research Publications, vol. 2, pp. 1-7, 2012.
[68] M. A. Fischler and R. C. Bolles, 'Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,' Communications of the ACM, vol. 24, pp. 381-395, 1981.
[69] A. Myronenko and X. Song, 'Point set registration: Coherent point drift,' IEEE transactions on pattern analysis and machine intelligence, vol. 32, pp. 2262-2275, 2010.
[70] A. Myronenko, X. Song, and M. A. Carreira-Perpinán, 'Non-rigid point set registration: Coherent point drift,' in Advances in Neural Information Processing Systems, pp. 1009-1016, 2007.
[71] F. L. Bookstein, 'Principal warps: Thin-plate splines and the decomposition of deformations,' IEEE Transactions on pattern analysis and machine intelligence, vol. 11, pp. 567-585, 1989.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72243-
dc.description.abstract在面對重大事故傷害、病症灶與感染等的大面積複合式組織缺損情況,醫生多會使用游離皮瓣手術為病患進行治療。在過去的研究中顯示游離皮瓣手術的成功率高達91~99%,其中仍有少數案例發生血液循環障礙,因血液循環障礙需再次手術搶救者約有5~25%,因此先前的研究建議手術後2~3天為游離皮瓣手術的重要觀察時段。目前臨床外科醫師廣泛接受的觀察方式為人工監控觀察法,此方法需要高度的仰賴醫護人員的訓練與主觀經驗的判斷,對醫院造成嚴重的人力資源負荷。目前的術後監控輔助設備多數是高耗材成本、高專業程度需求、具侵入性等條件限制。
為了要發展一套符合現今臨床需求具有操作簡便、快速即時、低成本、非侵入接觸、無放射性等性質的監控輔助設備以符臨床所需,本研究團隊研發「紅外線與可見光影像游離皮瓣即時監控系統」,藉由結合漢唐集成的「紅外線熱像儀醫療診斷系統」與一般常用的可見光相機,開發游離皮瓣半自動影像監控之系統,使其具有可即時且連續時間點的自動對位、追蹤、偵測動靜脈阻塞現象、回饋警示血管阻塞狀況等功能之設備。在系統研發的過程中,本研究團隊將其劃分為「持續性紅外光與可見光影像擷取系統」與「游離皮瓣血管阻塞判斷偵測系統」兩部分。本研究內容為「持續性紅外光與可見光影像擷取系統」,主要針對此子系統中可見光影像的部分進行相關研究,目標功能包含皮瓣辨識、自動對位、即時追蹤,取得皮瓣區域的資訊。提供紅外光影像方便取得皮瓣位置,有利於分析皮瓣內的血液循環是否有阻塞之情況。由於皮瓣為位置多樣且大小不一,目前此設計之子系統主要針對頭頸部之游離皮瓣手術血液循環異常之監控。為使系統能夠架設在加護病房中,使用的空間需求較小、容易操作與具有較高的安全性的機械手臂,將紅外光及可見光相機鑲嵌在機械手臂上,使紅外光及可見光相機可同時控制進行拍攝,獲得同時間點及近乎相同視角之影像。本研究開發之子系統為半自動式的監控系統,子系統自動執行前需手動設定皮瓣影像模型與手繪皮瓣邊緣建立皮瓣邊緣影像模型。子系統開始運作時,首先以膚色與臉部比例的方式取得臉部位置,透過尺度不變特徵變換匹配演算法以對位方式與仿射轉換進行人臉影像中皮瓣區域的辨識,在取的皮瓣區域後透過連貫性點群飄移的方式將皮瓣進行對位,接著透過薄板仿樣分析法獲得皮瓣的邊緣座標。
結果中發現,本研究開發的系統已能夠達成連續多時間點的皮瓣偵測、追蹤與自動對位取得皮瓣區域資訊的能力。人臉偵測的結果中顯示,可有效的去除非臉部區域之背景影像,並獲得包含有皮瓣區域的臉部影像。接著將偵測得之臉部區域影像進行皮瓣區域的辨識,尺度不變特徵變換匹配演算法與仿射轉換,將手繪圈選皮瓣區域影像模型之特徵點與偵測得的臉部區域影像之特徵點做特徵點匹配,辨識臉部區域中的皮瓣位置並將此區域經由仿射轉換顯示,獲得皮瓣區域位置。利用皮瓣區域位置中皮瓣影像的紋理和皮瓣邊緣的交叉點以及尺度不變特徵變換匹配演算法的特徵點進行連貫性點群飄移方式的點群對位,使皮瓣影像模型與測得之皮瓣區域影像中的皮瓣對齊,並藉由兩組對位點群計算獲得點群的移動場。最後採用薄板仿樣分析法將手繪皮瓣邊緣影像模型進行形變,使手繪的皮瓣邊緣形變至偵測得皮瓣區域中的皮瓣邊緣上,獲得偵測得皮瓣區域的皮瓣邊緣座標位置,並將偵測得皮瓣區域與皮瓣邊緣設定為新的影像模型,提供為下一張影像進行皮瓣辨識與對位。
本研究的系統已初步達成皮瓣偵測、追蹤與對位的能力,但此系統仍然存有部分的條件限制,例如計算速度須加快、無法對應背景環境快速的變化等,期望未來能夠將此系統更佳的優化,並能夠實際應用在急診室的術後監控之中,提高醫療的品質。
zh_TW
dc.description.abstractThe microvascular free flap surgery is used to reconstruct large-scale areas of complex tissue defects for patients such as major accident injuries, disease foci and infections, etc. Previous studies have showed that the success rate of the microvascular free flap surgery is as high as 91~99%. However, there are still several cases of circulatory compromise. According to statistics, about 5~25% of patients need re-exploration because of circulatory compromise. Therefore, previous studies suggest that 2~3 days after surgery is an important observation period for the microvascular free flap surgery.
Manual monitoring observation is currently the most widely used post-surgical monitoring method for clinical surgeons in practice. This method heavily relies on medical personnel with medical training and practical experience, thus causing heavy human resource burden in the hospital. Although several automatic or semi-automatic post-surgical monitoring approaches have been developed, most of them suffer such limitations as high consumables cost, high professional level requirements, invasiveness, and so on, which prevent these methods from practical uses.
To develop a real-time, low-cost, non-invasive and non-radioactive monitoring system which can be practically used in Intensive Care Unit (ICU) our team develop the system called “Free-flap Auto-Tracking System (FATS) for Thrombosis of Free Flap after Surgery”. Hardware of FATS was constituted of visible light camera and infrared medical diagnosis system which was made in United Integrated Services (UIS) company. FATS includes the function of automatic detection and tracking simultaneously. Moreover, this system can inform doctors, when detecting the phenomenon of circulatory compromise. FATS is composed of two sub-systems: (I) image acquisition system and (II) free flap analysis system.
This study, “Visible Light and Infrared Image Monitoring System for Thrombosis of Free Flap after Surgery: Auto-registration and Real-time Tracking of Free Flap”, is the (I) part of FATS, and with feature of flap detection, flap alignment and tracking instantaneously. The infrared image of the flap position can be used to analyze whether the circulatory compromise happened in the flap or not. Due to a variety of positions and the different sizes of the flaps, the system is aimed at monitoring the circulatory compromise of the free flap surgery of the head and neck. In order to mount the infrared light and visible light cameras on the robot arm and be applied in ICU, this system needs to possess the characteristics of small space requirements, easy operation and high safety. Firstly, the position of the face is obtained by the skin color and the proportion of the face. Secondly, the scale-invariant feature transformation (SIFT) algorithm and affine transformation were used to identify flap regions. Finally, the edge of the flap is aligned by the coherent point drift (CPD) method, and the edge coordinates of the flap are obtained by the thin-plate spline (TPS) method.
The result of this study shows that the system has been able to achieve flap detection, tracking and automatic alignment of the flap area information for multiple time points. Obtaining a face area with the flap by face detection. Then, the flap region is detected by SIFT alignment from the face-detected area. Furthermore, we matched the feature points of the flap region selected by the hand-drawn circle with the detected face area feature points to obtain the position of the flap region of face-detected area. To align the model of hand-drawn of the flap and face-detected area, cross point of the flap and SIFT feature point were used in CPD method. Additionally, we can obtain the moving field from the point group after CPD. Lastly, the TPS method can transform the hand-drawn flap edge on the face-detected flap region to obtain the flap edge position.
Although the system of this study possesses the merits of flap detection, tracking and alignment, it still has some conditional restrictions, including that the speed of calculation must be accelerated, and it is unable to respond to rapid changes in the background. It is expected that this system will be better optimized in the future, and can be practically applied in the postoperative monitoring of ICU to improve the quality of medical care.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:30:57Z (GMT). No. of bitstreams: 1
ntu-107-R04548046-1.pdf: 3556784 bytes, checksum: b131bd15cc66b81c7f7da36c01c63293 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
英文摘要 v
目錄 viii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 4
第二章 背景知識與文獻回顧 5
2.1 皮瓣概述 5
2.2 游離皮瓣手術過程 7
2.3 皮瓣監測系統之現況 8
2.4 紅外線熱像儀監控術後皮瓣 9
2.5 人臉偵測與物件追蹤 10
第三章 研究內容與方法 13
3.1 研究對象 13
3.2 皮瓣監測系統架構 13
3.2.1 皮瓣監測系統整體架構 13
3.2.2 持續性紅外光與可見光影像擷取系統之開發設計 15
3.2.3 持續性紅外光與可見光影像擷取系統流程 19
3.3 臉部偵測 22
3.4 皮瓣偵測 24
3.4.1 尺度不變特徵變換匹配演算法 25
3.4.2 仿射轉換(affine transform) 32
3.5 對焦系統與皮瓣追蹤 34
3.6 皮瓣邊緣之對位與形變 37
3.6.1 形態學(morphological) 37
3.6.2 連貫性點群飄移(coherent point drift, CPD) 42
3.6.3 薄板仿樣分析法(thin-plate spline, TPS) 45
第四章 研究結果與討論 48
4.1 人臉辨識 48
4.2 皮瓣辨識 49
4.3 對焦與追蹤 55
4.4 皮瓣邊緣之對位與形變 58
第五章 結論 66
5.1 結論 66
5.2 目前系統的限制與未來展望 68
參考資料 69
附錄 77
附錄1人類研究倫理審查證明 77
dc.language.isozh-TW
dc.subject影像對位zh_TW
dc.subject血循環障礙zh_TW
dc.subject游離皮瓣zh_TW
dc.subject皮瓣移植術後監控設備zh_TW
dc.subject人臉偵測zh_TW
dc.subject物件追蹤zh_TW
dc.subjectface detectionen
dc.subjectfree flapen
dc.subjectcirculatory compromiseen
dc.subjectimage alignmenten
dc.subjectpostoperative monitoring equipmenten
dc.subjectobject trackingen
dc.title可見光影像游離皮瓣術後監測系統之開發:自動對位與即時追蹤zh_TW
dc.titleVisible Light Image Monitoring System for Thrombosis of Free Flap after Surgery: Auto-registration and Real-time Tracking of Free Flapen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭成康,李佳燕,莊競程
dc.subject.keyword游離皮瓣,血循環障礙,皮瓣移植術後監控設備,人臉偵測,物件追蹤,影像對位,zh_TW
dc.subject.keywordfree flap,circulatory compromise,postoperative monitoring equipment,face detection,object tracking,image alignment,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201803783
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved