Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7223
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武zh_TW
dc.contributor.advisorTung-Wu Luen
dc.contributor.author劉奕寬zh_TW
dc.contributor.authorYi-Kuan Liuen
dc.date.accessioned2021-05-19T17:40:21Z-
dc.date.available2024-08-15-
dc.date.copyright2019-08-23-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1. McLeod, W.D. and T. Blackburn, Biomechanics of knee rehabilitation with cycling. The American journal of sports medicine, 1980. 8(3): p. 175-180.
2. Callaghan, M.J., Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 2005. 9(3): p. 226-236.
3. Holmes, J., A. Pruitt, and N. Whalen, Lower extremity overuse in bicycling. Clinics in sports medicine, 1994. 13(1): p. 187-205.
4. Jacob Apkarian, S.N.a.B.C., A Three-Dimensional Kinematic and Dynamic Model of The Lower Limb. J Biomech, 1989. 22(2): p. 143-155.
5. Eng, J.J. and D.A. Winter, Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? Journal of biomechanics, 1995. 28(6): p. 753-758.
6. Davis III, R.B., et al., A gait analysis data collection and reduction technique. Human movement science, 1991. 10(5): p. 575-587.
7. Fujie, H., et al., The use of robotics technology to study human joint kinematics: a new methodology. Journal of biomechanical engineering, 1993. 115(3): p. 211-217.
8. Fujie, H., et al., Forces and moments in six-DOF at the human knee joint: mathematical description for control. Journal of Biomechanics, 1996. 29(12): p. 1577-1585.
9. Bates, N.A., et al., A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics. Ann Biomed Eng, 2015. 43(10): p. 2456-66.
10. Bull, A. and A. Amis, Knee joint motion: description and measurement. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1998. 212(5): p. 357-372.
11. Hallén, L.G. and O. Lindahl, The “Screw-Home” Movement in the Knee-Joint. Acta Orthopaedica Scandinavica, 2009. 37(1): p. 97-106.
12. Beynnon, B.D., et al., Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. The American Journal of Sports Medicine, 1995. 23(1): p. 24-34.
13. Ramsey, D., et al., Methodological concerns using intra-cortical pins to measure tibiofemoral kinematics. Knee Surgery, Sports Traumatology, Arthroscopy, 2003. 11(5): p. 344-349.
14. Chen, H.-L., et al., Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis. Journal of Biomechanics, 2008. 41(4): p. 753-761.
15. Ehara, Y., et al., Comparison of the performance of 3D camera systems II. Gait & Posture, 1997. 5(3): p. 251-255.
16. Kuo, M.-Y., et al., Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait & posture, 2011. 33(3): p. 379-384.
17. Lafortune, M., et al., Three-dimensional kinematics of the human knee during walking. Journal of biomechanics, 1992. 25(4): p. 347-357.
18. Lu, T.-W. and J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics, 1999. 32(2): p. 129-134.
19. Patel, V.V., et al., A three‐dimensional MRI analysis of knee kinematics. Journal of Orthopaedic Research, 2004. 22(2): p. 283-292.
20. Komistek, R.D., D.A. Dennis, and M. Mahfouz, In vivo fluoroscopic analysis of the normal human knee. Clinical Orthopaedics and Related Research (1976-2007), 2003. 410: p. 69-81.
21. Tashman, S. and W. Anderst, In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Transactions-American Society of Mechanical Engineers Journal of Biomechanical Engineering, 2003. 125(2): p. 238-245.
22. Lemieux, L., et al., A patient-to-computed-tomography image registration method based on digitally reconstructed radiographs. Med Phys, 1994. 21(11): p. 1749-60.
23. Lu, T.-W., et al., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical Engineering & Physics, 2008. 30(8): p. 1004-1012.
24. Lin, C.C., et al., Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics. Med Eng Phys, 2014. 36(2): p. 267-74.
25. Gabel, M., et al. Full body gait analysis with Kinect. in 2012 Annual international conference of the IEEE engineering in medicine and biology society. 2012. IEEE.
26. Gill, T.J., et al., The effect of posterior cruciate ligament reconstruction on patellofemoral contact pressures in the knee joint under simulated muscle loads. Am J Sports Med, 2004. 32(1): p. 109-15.
27. Chang, C.-R., Calculation of Knee Ligament and Cartilage Loading During Pedaling: Effects of Seat Height. National Taiwan University, 2018.
28. Mootanah, R., et al., Development and validation of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis. Computer methods in biomechanics and biomedical engineering, 2014. 17(13): p. 1502-1517.
29. Frost, H.M., Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. The Angle Orthodontist, 1994. 64(3): p. 175-188.
30. J. H. Heegaard, G.S.B., D. R. Carter Mechanically modulated cartilage growth may regulate joint surface morphogenesis. Journal of Orthopaedic Research Society, 2005. 17(4): p. 509-517.
31. Wren, T.A., G.S. Beaupre, and D.R. Carter, A model for loading-dependent growth, development, and adaptation of tendons and ligaments. Journal of biomechanics, 1997. 31(2): p. 107-114.
32. Carter, D.R., et al., The mechanobiology of articular cartilage development and degeneration. Clinical orthopaedics and related research, 2004. 427: p. S69-S77.
33. Carter, D.R., Mechanical loading history and skeletal biology. Journal of biomechanics, 1987. 20(11-12): p. 1095-1109.
34. O'connor, J., et al., The geometry of the knee in the sagittal plane. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1989. 203(4): p. 223-233.
35. Lu, T. and J. O'Connor, Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: comparison between theory and experiment. Journal of Anatomy, 1996. 189(Pt 3): p. 575.
36. Conconi, M., A. Leardini, and V. Parenti-Castelli, Joint kinematics from functional adaptation: A validation on the tibio-talar articulation. Journal of biomechanics, 2015. 48(12): p. 2960-2967.
37. Baka, N., et al., Statistical shape model-based femur kinematics from biplane fluoroscopy. IEEE Trans Med Imaging, 2012. 31(8): p. 1573-83.
38. Yao, J., Assessing accuracy factors in deformable 2D/3D medical image registration using a statistical pelvis model. Computer Vision. Ninth IEEE International Conference., 2003.
39. Hurvitz, A. and L. Joskowicz, Registration of a CT-like atlas to fluoroscopic X-ray images using intensity correspondences. International Journal of Computer Assisted Radiology and Surgery, 2008. 3(6): p. 493-504.
40. Fluete, M.a.S.L., Nonrigid 3-D/2-D registration of images using statistical models. International Conference on Medical Image Computing and Computer-Assisted Intervention, 1999.
41. Benameur, S., et al., 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Computerized Medical Imaging and Graphics, 2003. 27(5): p. 321-337.
42. Laporte, S., et al., A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput Methods Biomech Biomed Engin, 2003. 6(1): p. 1-6.
43. Lamecker, H., T.H. Wenckebach, and H.-C. Hege, Atlas-based 3D-Shape Reconstruction from X-Ray. 2006.
44. Zheng, G., et al., A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Med Image Anal, 2009. 13(6): p. 883-99.
45. Tang, T.S. and R.E. Ellis. 2D/3D deformable registration using a hybrid atlas. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2005. Springer.
46. Li, S.-Y., Development of A Statistical Shape Model of the Human Knee for Three-Dimensional Fluoroscopic Imaging of the Joint Motion. National Taiwan University, 2018.
47. Dreiseitl, S. and L. Ohno-Machado, Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics, 2002. 35(5-6): p. 352-359.
48. S. Agatonovic-Kustrin, R.B., Basic concepts of artifical neural netowrk (ANN) modeling and its application in pharmaceurical research. Journal of Pharmaceutical and Biomedical Analysis, 2000. 22: p. 717-727.
49. Alpaydin, E., Introduction to Machine Learning (3rd edition). Massachusetts Institute of Technology, 2014.
50. Sarle, W.S., Neural Networks and Statistical Models. Proceedings of the Nineteenth Annual SAS Users Group International Conference, 1994.
51. Jiang, N., et al., Effect of arm position on the prediction of kinematics from EMG in amputees. Med Biol Eng Comput, 2013. 51(1-2): p. 143-51.
52. Rezzoug, N. and P. Gorce, Prediction of fingers posture using artificial neural networks. J Biomech, 2008. 41(12): p. 2743-9.
53. Liu, Y., et al., Lower extremity joint torque predicted by using artificial neural network during vertical jump. J Biomech, 2009. 42(7): p. 906-11.
54. Lorensen, W.E. and H.E. Cline. Marching cubes: A high resolution 3D surface construction algorithm. in ACM siggraph computer graphics. 1987. ACM.
55. Ferrarini, L., et al., GAMEs: growing and adaptive meshes for fully automatic shape modeling and analysis. Med Image Anal, 2007. 11(3): p. 302-14.
56. Besl, P.J. and N.D. McKay. Method for registration of 3-D shapes. in Sensor Fusion IV: Control Paradigms and Data Structures. 1992. International Society for Optics and Photonics.
57. Myronenko, A. and X. Song, Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell, 2010. 32(12): p. 2262-75.
58. Sarkalkan, N., H. Weinans, and A.A. Zadpoor, Statistical shape and appearance models of bones. Bone, 2014. 60: p. 129-40.
59. Cootes, T.F. and C.J. Taylor, Statistical models of appearance for computer vision. 2004, Technical report, University of Manchester.
60. Goodall, C., Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society. Series B (Methodological), 1991: p. 285-339.
61. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and intelligent laboratory systems, 1987. 2(1-3): p. 37-52.
62. Heimann, T. and H.P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Med Image Anal, 2009. 13(4): p. 543-63.
63. Li, J.-D., Development of 2D-3D Registration Methods for Alternating Biplane Fluoroscopy to Quantify Soft Tissue Artefacts in the Lower Limb and Their Effects on Mechanical Analysis of the Knee During Pedalling. National Taiwan University, 2018.
64. Miranda, D.L., et al., Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. J Biomech, 2010. 43(8): p. 1623-6.
65. Wu, G. and P.R. Cavanagh, ISB recommendations for standardization in the reporting of kinematic data. Journal of biomechanics, 1995. 28(10): p. 1257-1261.
66. Levenberg, K., A method for the solution of certain non-linear problems in least squares. Quarterly of applied mathematics, 1944. 2(2): p. 164-168.
67. Geladi, P. and B.R. Kowalski, Partial least-squares regression: a tutorial. Analytica chimica acta, 1986. 185: p. 1-17.
68. Gardner, M.W. and S. Dorling, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric environment, 1998. 32(14-15): p. 2627-2636.
69. Cignoni, P., C. Rocchini, and R. Scopigno. Metro: measuring error on simplified surfaces. in Computer Graphics Forum. 1998. Wiley Online Library.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7223-
dc.description.abstract自行車運動在臨床上對於膝關節常被拿來做為傷後復健的手段,但不當的騎乘自行車也會對膝關節造成傷害,故了解自行車運動時的膝關節生物力學是相當重要的。以往研究膝關節力學的方式主要分為活體研究與試體研究:活體研究雖能量測人體膝關節之運動學資訊,但卻無法得知關節內部詳細之力學表現;而透過六軸機械手臂輔助之試體研究雖能得知動作中之生物力學表現,但因無從得知屬於試體之活體功能性運動學資訊,故無法模擬其動作並觀察其中生物力學。若能得知屬於試體、具活體意義的運動學資訊,未來便能利用試體實驗模擬自行車運動,並觀察過程中的生物力學變化,以對臨床復健及運動層面上的自行車運動給予建議。
本研究以57隻膝關節骨模型與24位受試者踩踏自行車的運動學資訊建立統計模型,並通過最佳化找出24組對應的係數組合作為類神經網路的訓練資料。透過決定初步類神經網路結構、評估應用範圍、改進預測表現等三個步驟,本研究成功從骨頭幾何外型預測運動學資訊,並對類神經網路的設置與應用範圍給出建議。
結果顯示以最佳化方法重建膝關節的平均方均根誤差於股骨與脛骨分別為0.68±0.07 mm與0.76±0.10 mm,而運動學資訊誤差至多只有0.51度與0.37 mm,顯示本方法能良好的重建幾何外型及運動學資訊。而本研究發現經模型對應後股骨體積介於174至220立方公分、脛骨體積介於132至161立方公分者有高的預測精確度,在運動學的平均預測誤差為1.77度與0.98毫米。本研究所開發之方法能以高準確度重建膝關節骨模型以及自行車踩踏運動學,並用類神經網路預測幾何外型所對應之運動學,以期未來能應用於基於機械手臂之試體實驗以了解膝關節於踩踏運動時的詳細生物力學。
zh_TW
dc.description.abstractCycling is often taken as a rehabilitation treatment for the patients with injury of lower extremities. However, pedaling wrongly may cause injuries of knee joints. Therefore, revealing detail biomechanics of a pedaling knee is important. Biomechanics of knee had been studied mainly by in vivo and in vitro ways. With in vivo method, kinematics of a living individual can be measured, but not the detail biomechanics. On the other hand, detail biomechanics can be measured by in vitro studies, but not in living, functional movements. Therefore, providing the living kinematics for cadavers to in vitro experiments could be helpful for figuring out the biomechanics of pedaling.
This study collected 57 knee models and pedaling kinematics data of 24 subjects to establish database. Through establishing statistical model of geometry and kinematics, this study simplified the geometry and kinematics with few simple coefficients and figured out the relationship between with artificial neural network (ANN), and the scope of application of this method was given.
The reconstruction error of 3D model were 0.68±0.07 mm for femur and 0.76±0.10 mm for tibia. The reconstruction errors of kinematics were up to 0.51 degree for rotation and 0.37 mm for translation. Leave-one-out tests were done with the joints with volume after model correspondence in 174 to 220 cm3 for femur and 132 to 161 cm3 for tibia, the predicted kinematics had error of 1.77 degree for rotation and 0.98 mm for translation. This study developed a method to predict the knee kinematics from the geometry to provide a meaningful kinematics for cadavers which could be applied to in vitro experiments, and might help us revealing the detail biomechanics while pedaling.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:40:21Z (GMT). No. of bitstreams: 1
ntu-108-R06548025-1.pdf: 4309721 bytes, checksum: 66b1df816d475ce4106ac32faaa62516 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
第一節 研究背景 1
第二節 膝關節之解剖學與運動學 3
第三節 文獻回顧 5
第四節 研究目的 15
第二章 材料與方法 16
第一節 訓練模型 16
第二節 統計形狀模型 18
第三節 自行車運動學參數 22
第四節 類神經網路 25
第五節 實驗流程 28
第六節 誤差量化 31
第三章 結果 33
第一節 膝關節統計模型 33
第二節 試體膝關節模型參數化 40
第三節 自行車踩踏運動學統計模型 44
第四節 類神經網路 49
第四章 討論 62
第五章 結論 66
第六章 參考文獻 68
-
dc.language.isozh_TW-
dc.subject膝關節zh_TW
dc.subject類神經網路zh_TW
dc.subject三維骨模型zh_TW
dc.subject運動學zh_TW
dc.subject自行車運動zh_TW
dc.subject統計模型zh_TW
dc.subjectKnee jointen
dc.subjectPedalingen
dc.subjectKinematicsen
dc.subject3-D shape modelen
dc.subjectANNen
dc.subjectStatistical modelen
dc.title發展可利用膝關節三維幾何以預測自行車踩踏時該關節運動之人工智慧技術zh_TW
dc.titleDevelopment of an AI-Based Method for Predicting Three-Dimensional Kinematics from Geometry of the Knee During Pedalingen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林正忠;陳文斌;陳祥和zh_TW
dc.contributor.oralexamcommitteeCheng-Chung Lin;Weng-Pin Chen;Hsiang-Ho Chenen
dc.subject.keyword膝關節,自行車運動,運動學,三維骨模型,類神經網路,統計模型,zh_TW
dc.subject.keywordKnee joint,Pedaling,Kinematics,3-D shape model,ANN,Statistical model,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU201903064-
dc.rights.note未授權-
dc.date.accepted2019-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2029-12-31-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
4.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved