Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群
dc.contributor.authorWei-Chun Luen
dc.contributor.author陸韋君zh_TW
dc.date.accessioned2021-06-17T06:30:43Z-
dc.date.available2023-08-20
dc.date.copyright2018-08-20
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation[1] FANUC. (2018, June 26). FANUC GLOBAL. Available: https://www.fanuc.com/
[2] Amazon. (2018, June 26). Amazon.com. Available: https://www.amazon.com/
[3] MWPVL International Inc. (2018, June 26). Kiva systems. Available: http://www.mwpvl.com/html/kiva_systems.html
[4] SoftBank. (2018, June 26). Pepper. Available: https://www.softbank.jp/en/robot/
[5] Boston Dynamics. (2018, June 26). Boston DynamicsChanging your idea of what robots can do. Available: https://www.bostondynamics.com/
[6] Boston Dynamics. (2018, June 26). Big dog. Available: https://www.bostondynamics.com/bigdog
[7] Boston Dynamics. (2018, June 26). Atlas. Available: https://www.bostondynamics.com/atlas
[8] FESTO. (2018, June 26). FESTO. Available: https://www.festo.com/group/en/cms/index.htm
[9] FESTO. (2018, June 26). Bionic Learning Network. Available: https://www.festo.com/group/en/cms/10156.htm
[10] FESTO. (2018, June 26). BionicWheelBot. Available: https://www.festo.com/group/en/cms/13129.htm
[11] FANUC. (2018, June 27). FANUC robot arm. Available: https://www.fanuc.eu/uk/en/robots/robot-range-page
[12] FESTO. (2018, June 26). BionicFlyingFox. Available: https://www.festo.com/group/en/cms/13130.htm
[13] U. Saranli, M. Buehler, and D. E. Koditschek, 'RHex: A simple and highly mobile hexapod robot,' International Journal of Robotics Research, vol. 20, no. 7, pp. 616-631, Jul 2001.
[14] K. J. Huang, C. K. Huang, and P. C. Lin, 'A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot,' Bioinspiration and Biomimetics, vol. 9, no. 4, p. 046004, Oct 2014.
[15] R. M. Alexander, Elastic mechanisms in animal movement Cambridge University Press 1988.
[16] P. Holmes, R. J. Full, D. E. Koditschek, and J. Guckenheimer, 'The dynamics of legged locomotion: Models, analyses, and challenges,' Siam Review, vol. 48, no. 2, pp. 207-304, Jun 2006.
[17] J. Rummel and A. Seyfarth, 'Stable running with segmented legs,' The International Journal of Robotics Research, vol. 27, no. 8, pp. 919-934, 2008.
[18] J. Y. Jun and J. E. Clark, 'Effect of rolling on running performance,' in IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011, pp. 2009-2014.
[19] R. J. Full and D. E. Koditschek, 'Templates and anchors: neuromechanical hypotheses of legged locomotion on land,' Journal of Experimental Biology, vol. 202, no. 23, pp. 3325-3332, 1999.
[20] J. Seipel and P. Holmes, 'A simple model for clock-actuated legged locomotion,' Regular and Chaotic Dynamics, vol. 12, no. 5, pp. 502-520, 2007.
[21] M. M. Ankarali and U. Saranli, 'Stride-to-stride energy regulation for robust self-stability of a torque-actuated dissipative spring-mass hopper,' Chaos, vol. 20, p. 033121, 2010.
[22] Z. H. Shen and J. E. Seipel, 'A fundamental mechanism of legged locomotion with hip torque and leg damping,' Bioinspiration and Biomimetics, vol. 7, no. 4, p. 046010, 2012.
[23] V. Vasilopoulos, I. S. Paraskevas, and E. G. Papadopoulos, 'Compliant terrain legged locomotion using a viscoplastic approach,' presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 2014.
[24] Y. Or and M. Moravia, 'Analysis of foot slippage effects on an actuated spring-mass model of dynamic legged locomotion,' International Journal of Advanced Robotic Systems, vol. 13, no. 2, 2016.
[25] H. Hamzaçebi and Ö. Morgül, 'On the periodic gait stability of a multi-actuated spring-mass hopper model via partial feedback linearization,' Nonlinear Dynamics, vol. 88, no. 2, pp. 1237-1256, 2017.
[26] C. Li, T. Zhang, and D. I. Goldman, 'A terradynamics of legged locomotion on granular media,' Science, vol. 339, pp. 1408-1412, 2013.
[27] M. M. Ankaralı and U. Saranlı, 'Control of underactuated planar pronking through an embedded spring-mass Hopper template,' Autonomous Robots, vol. 30, no. 2, pp. 217-231, 2010.
[28] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz, A. Abate, et al., 'ATRIAS: Design and Validation of a Tether-free 3D-capable Spring-Mass Bipedal Robot,' International Journal of Robotics Research, 2016.
[29] I. Poulakakis and J. W. Grizzle, 'The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper,' IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1779-1793, 2009.
[30] M. Shahbazi, R. Babuˇska, and G. A. D. Lopes, 'Unified modeling and control of walking and running on the spring-loaded inverted pendulum,' IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1178-1195, 2016.
[31] D. J. Hyun, S. Seok, J. Lee, and S. Kim, 'High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah,' The International Journal of Robotics Research, vol. 33, no. 11, pp. 1417-1445, 2014.
[32] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepftinger, and R. Siegwart, 'Control of Dynamic Gaits for a Quadrupedal Robot,' in IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, pp. 3287-3292.
[33] D. Owaki and A. Ishiguro, 'A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping,' Scientific Reports, vol. 7, no. 1, p. 277, Mar 21 2017.
[34] J. Rummel, Y. Blum, and A. Seyfarth, 'Robust and efficient walking with spring-like legs,' Bioinspiration and Biomimetics, vol. 5, no. 4, p. 046004, 2010.
[35] H. R. Vejdani, A. Wu, H. Geyer, and J. W. Hurst, 'Touch-down angle control for spring-mass walking,' in IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 5101-5106.
[36] Y. Huang, B. Vanderborght, R. V. Ham, QiningWang, M. V. Damme, G. Xie, et al., 'Step Length and Velocity Control of a Dynamic BipedalWalking RobotWith Adaptable Compliant Joints,' IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 598-611, 2013.
[37] F. I. Sheikh, 'Towards fast running: Open-loop speed and direction control of a single-legged hopper,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, pp. 5114-5120.
[38] J. Hunt, F. Giardina, A. Rosendo, and F. Iida, 'Improving efficiency for an open-loop-controlled locomotion with a pulsed actuation,' IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1581-1591, 2016.
[39] J. D. Weingarten, G. A. D. Lopes, M. Buehler, R. E. Grof, and D. E. Koditschek, 'Automated Gait Adaptation for Legged Robots,' presented at the IEEE International Conference on Robotics and Automation (ICRA), New Orleans, LA, USA, 2004.
[40] S. Burden, J. Clark, J. Weingarten, H. Komsuoglu, and D. Koditschek, 'Heterogeneous Leg Stiffness and Roll in Dynamic Running,' presented at the IEEE International Conference on Robotics and Automation (ICRA), Roma, Italy, 2007.
[41] K. J. Huang, S. C. Chen, H. Komsuoglu, G. Lopes, J. Clark, and P. C. Lin, 'Design and performance evaluation of a bio-Inspired and single-motor-driven hexapod robot with dynamical gaits,' Journal of Mechanisms and Robotics, vol. 7, no. 3, p. 031017, 2015.
[42] A. Goswami, B. Thuilot, and B. Espiau, 'A study of the passive gait of a compass-like biped robot-- Symmetry and chaos,' International Journal of Robotics Research, vol. 17, no. 12, pp. 1282-1301, 1998.
[43] F. Asano, 'Efficiency analysis of 2-period dynamic bipdal gaits,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, 2009, pp. 173-180.
[44] T. Narukawa, M. Takahashi, and K. Yoshida, 'Biped locomotion on level ground by torso and swing-leg control based on passive-dynamic walking,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, Alta., Canada, 2005.
[45] J. Lee, D. J. Hyun, J. Ahnl, S. Kim, and N. Hogan, 'On the dynamics of a quadruped robot model with impedance control: Self-stabilizing high speed trot-running and period-doubling bifurcations,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 2014, pp. 4907-4913.
[46] J. Y. Jun and J. E. Clark, 'Characterization of running with compliant curved legs,' Bioinspiration and Biomimetics, vol. 10, no. 4, p. 046008, 2015.
[47] J. Y. Jun and J. E. Clark, 'Dynamic stability of variable stiffness running,' in IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan, 2009, pp. 1756-1761.
[48] J. Y. Jun, D. Haldane, and J. E. Clark, 'Compliant leg shape, reducedorder models and dynamic running,' in 12th International Symposium on Experimental Robotics, 2010.
[49] J. Y. Jun and J. E. Clark, 'A reduced-order dynamical model for running with curved legs,' in IEEE International Conference on Robotics and Automation (ICRA), RiverCentre, Saint Paul, Minnesota, USA, 2012, pp. 2351-2357.
[50] J. Y. Jun, 'Characterization and optimization of running with curved legs,' Doctor of Philosophy, Department of Mechanical Engineering, The Florida State University, 2011.
[51] J. C. J and I. N. Stewart, 'Coupled nonlinear oscillators and the symmetries of animal gaits ' Journal of Nonlinear Science, vol. 3, pp. 349-392, 1993.
[52] S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, 2 ed.: Westview Press, 2015.
[53] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, 'Compliant quadruped locomotion over rough terrain,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St. Louis, USA, 2009, pp. 814-820.
[54] T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi, and D. G. Caldwell, 'Dynamic torque control of a hydraulic quadruped robot,' in IEEE International Conference on Robotics and Automation (ICRA), RiverCentre, Saint Paul, Minnesota, USA, 2012, pp. 1889-1894.
[55] C. J. Hu, C. K. Huang, and P. C. Lin, 'A torque-actuated dissipative spring loaded inverted pendulum model with rolling contact and its use as the template for design and dynamic behavior generation on a hexapod robot,' in IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 5177-5183.
[56] C. L. Chen, T. K. Wang, C. J. Hu, and P. C. Lin, 'Model-based dynamic gait in a quadruped robot with waist actuation,' in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 2016, pp. 2056-2061.
[57] N. Ho. (2013, January 5). Finding optimal rotation and translation between corresponding 3D points. Available: http://nghiaho.com/?page_id=671
[58] O. Sorkine-Hornung and M. Rabinovich, 'Least-Squares Rigid Motion Using SVD,' June 30 2016.
[59] J. J. Craig, 'Introduction to Robotics,' 3 ed New Jersey: Pearson Education, Inc, 2005, pp. 41-45.
[60] S. Grillner, 'Locomotion in Vertebrates: Central Mechanisms and Reflex Interaction ' Physiological Reviews vol. 55, no. 2, pp. 247-304, 1975.
[61] G. E. G. Jr., R. M. Reinking, and D. G. Stuart, 'The Cat Step Cycle: Hind Limb Joint Angles and Muscle Lengths during Unrestrained Locomotion,' Journal of Morphology, vol. 141, no. 1, pp. 1-41, 1973.
[62] C. K. Huang, C. L. Chen, C. J. Hu, and P. C. Lin, 'Model-based bounding on a quadruped robot,' in IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 3576-3581.
[63] R. Blickhan and R. J. Full, 'Similarity in multilegged locomotion: Bouncing like a monopode,' Journal of Comparative Physiology A, vol. 173, no. 5, pp. 509-517, 1993.
[64] R. Wang, W. Zhao, S. Li, and S. Zhang, 'Influence of 'J'-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion,' Applied Bionics and Biomechanics, vol. 2016, p. 1453713, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72239-
dc.description.abstract本研究致力於基礎模型之探索與開發,首先在實驗室先前所開發之rolling SLIP (R-SLIP)模型基礎上加入位置控制之考量,建構clock torqued rolling SLIP (CTR-SLIP)模型,使模型得以作為機器人暫態與穩態行為之模版。本文探討與分析模型之三維收斂區間,收斂範圍內不同的落地條件使模型和機器人可以做穩定點間之轉換。實驗結果證實,機器人能雙向成功地切換兩跑動速度下之動態,此結果之特點在於此作法純粹以模型為基礎,不需要額外之調整、優化與學習。
再者,本文以R-SLIP模型所衍生之腳部軌跡為基礎,對軌跡週期縮放所產生的動態進行探究,討論常用於行走步態上之腳部軌跡線性週期縮放方式對於機器人之影響。藉由CTR-SLIP模型,可以模擬並分析系統之動態。實驗部分顯示,在一定程度的週期縮放範圍內,機器人可以呈現不同於原本軌跡穩定點動態之穩定步態。
第三,本研究以R-SLIP模型雙週期被動動態為基礎,建構機器人跑動步態雙週期動態。模擬上,使用return map分析雙週期穩定點之分布,探討兩步相同與相異落地角度之動態。實驗部分,將兩組雙週期腳部軌跡實現於機器人上,結果顯示機器人確實能呈現雙週期動態步態。
最後,本文探討簡化模型之性質對於動態的影響,先以不同地面接觸條件與自由度耦合情形之四個簡化模型進行討論,而後建構Generalized-SLIP (G-SLIP)廣義模型涵蓋此四模型,進一步進行模型性質變動之探討。此外,利用G-SLIP廣義模型,可以在定義的代價函數下對模型參數進行優化,得到特定條件下之優化模型,其優化結果可對於此條件下機器人之腳部設計予以建議。
zh_TW
dc.description.abstractThis research is dedicate to the exploration and development of reduce-order models. First, this thesis reports on the development of the clock-torqued rolling spring loaded inverted pendulum (CTR-SLIP) model. The new model adds clock-based torque control on the leg orientation of the previously-developed R-SLIP model so it can serve as the dynamic motion template to guide both transient and steady-state running of the robot as the anchor. The 3-dimenaional BOA of the model is investigated and analyzed, and the inclusion of the touchdown speed in BOA of the model enables the model/robot to perform speed transition from one fixed point profile to another. The experiment results confirm that the robot can successfully transit between two running speeds bi-directionally. The achievement of variable-speed running on the model and robot by the proposed method has a unique merit that it is purely model-based, no needs for further tuning, optimizing, or learning process.
Secondly, the dynamic motion generation of a robot with leg trajectories derived from the fixed-point trajectories of the R-SLIP model is studied. This research investigates the effect of linear period scaling, which is widely used in walking gait, on the dynamics of the robot. On the base of CTR-SLIP model, the dynamics of the system are simulated and analyzed. The experimental results show that a robot using a clock with period variation in a certain range of the original fixed point can perform stable dynamic motions, yet with a profile that differs from the original profile.
Third, this thesis explored the generation of period two dynamic running motion in a robot, based on the passive dynamic period two motion of R-SLIP model. The distribution of the period two fixed points of the model was analyzed using a return map. Models with the same or different landing angles per motion cycle were studied, and two sets of period two motion trajectories were implemented in a robot for experimental evaluation. Based on the experiments, the robot was capable of performing dynamic period two motion.
Finally, this research explores the effects of the property of reduced-order models on the dynamics. Four basic models with different contact and couple property are discussed and a general model, Generalized-SLIP (G-SLIP) model is constructed. This general model includes the special cases of four models and helps explore the variation of the model properties. In addition, based on G-SLIP model, the reduce-order model can be optimized with certain defined cost function. The optimal result suggests the better leg configuration for the demand.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:30:43Z (GMT). No. of bitstreams: 1
ntu-107-R05522807-1.pdf: 16640875 bytes, checksum: e7730b068eb40025141f02482c8509a2 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract IV
目錄 VI
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3文獻回顧 4
1.3.1 速度與步態轉換 6
1.3.2 軌跡週期縮放 7
1.3.3 雙週期動態 7
1.3.4 不同構形與特性之模型 8
1.4貢獻 8
1.5論文架構 9
第二章 具位置控制之滾動彈性倒單擺模型 11
2.1 模型推導與開發流程 11
2.1.1 定義模型參數 11
2.1.2 動態方程式 11
2.1.3 穩定度分析 12
2.2 R-SLIP模型回顧 13
2.2.1 模型結構與參數 13
2.2.2 動態方程式 14
2.2.3 穩定度分析 16
2.3 CTR-SLIP模型建構 23
2.3.1 模型結構與參數 24
2.3.2 動態方程式 24
2.3.3 Two-leg CTR-SLIP model 25
2.3.4軌跡生成 27
2.3.5 Relative phase (ρ) 之定義 29
2.4 CTR-SLIP模型動態模擬與穩定性分析 31
2.4.1多步動態模擬 31
2.4.2 Basin of attraction穩定性分析 37
2.5 CTR-SLIP模型跑動步態實驗 47
2.5.1 實驗平台 47
2.5.2 動態量測系統 49
2.5.3 暫態至穩態跑動實驗 52
2.5.4 Fixed point轉換實驗 58
2.5.5 CTR-SLIP模型與實驗結果探討 63
第三章 軌跡週期縮放之動態 64
3.1 軌跡生成 64
3.1.1參考軌跡選取 65
3.1.2 Fixed point與週期縮放軌跡比較 66
3.1.3 Tratio定義 68
3.2周期縮放步態之動態模擬與穩態分析 68
3.2.1以CTR-SLIP模型模擬週期縮放步態 69
3.2.2週期縮放步態之穩態分析 71
3.3週期縮放步態實驗 74
第四章 雙週期動態 80
4.1 R-SLIP模型之period-two fixed point 80
4.1.1 兩步落地角度相同R-SLIP模型之bifurcation 80
4.1.2 兩步落地角度相異R-SLIP模型之雙週期穩定點 86
4.2 雙週期軌跡生成 88
4.2.1 軌跡配置與生成 88
4.2.2 雙週期動態之Relative Phase (ρ)定義 90
4.3 雙週期動態模擬與穩定性分析 90
4.3.1 以CTR-SLIP模型模擬兩步落地角度相同之雙週期步態 90
4.3.2 以CTR-SLIP模型模擬兩步落地角度相異之雙週期步態與其穩定性分析 92
4.4 雙週期動態步態之實現與實驗 96
4.4.1 離線Database 96
4.4.2 兩步落地角度相同之雙週期步態實現 97
4.4.3 兩步落地角度相異之雙週期步態實現與實驗 97
第五章 廣義模型與動態模型特性探討 101
5.1 模型特性與回顧 102
5.1.1 SLIP模型回顧 102
5.1.2 SLIP-RF模型回顧 104
5.1.3 TSL模型回顧 106
5.1.4 四模型穩定性分析比較 108
5.2 廣義模型 111
5.2.1 廣義模型建立 111
5.2.2 廣義模型之特例 113
5.2.3 具位置控制之廣義模型 117
5.2.4 廣義模型之無因次化 122
5.3 滾動與彈簧性質對模型的影響 123
5.3.1 變動參數定義 124
5.3.2 模型性質隨變數變動之結果 125
5.4 指定動態下之模型優化 129
5.4.1 模型優化之搜尋方式與流程 129
5.4.2 單一穩定點動態之模型優化 131
5.4.3 綜合指標之模型優化 133
第六章 結論與未來展望 141
6.1 結論 141
6.2 未來展望 143
參考文獻 146
dc.language.isozh-TW
dc.subject位置控制zh_TW
dc.subject基礎動態模型zh_TW
dc.subject穩定點zh_TW
dc.subject動態跑動步態zh_TW
dc.subject六足機器人zh_TW
dc.subjectdynamic running gaiten
dc.subjectdynamic reduced-order modelen
dc.subjectfixed pointen
dc.subjectproportional-derivative controlen
dc.subjecthexapod robot.en
dc.title足式機器人動態跑步步態之基礎模型探索zh_TW
dc.titleDevelopment of Running Templates in a Legged Roboten
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林紀穎,連豊力,顏炳郎
dc.subject.keyword動態跑動步態,基礎動態模型,穩定點,位置控制,六足機器人,zh_TW
dc.subject.keyworddynamic running gait,dynamic reduced-order model,fixed point,proportional-derivative control,hexapod robot.,en
dc.relation.page150
dc.identifier.doi10.6342/NTU201802428
dc.rights.note有償授權
dc.date.accepted2018-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
16.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved