Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72208
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟
dc.contributor.authorRu-Yi Changen
dc.contributor.author張如意zh_TW
dc.date.accessioned2021-06-17T06:29:01Z-
dc.date.available2018-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation1. teachmeanatomy., http://teachmeanatomy.info/back/bones/vertebral-column.
2. goodmancampbell., https://www.goodmancampbell.com/spine-anatomy
3. Foley, K.T. and S.K. Gupta, Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. Journal of Neurosurgery: Spine, 2002. 97(1): p. 7-12.
4. Gaines Jr, R.W., The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. JBJS, 2000. 82(10): p. 1458-1476.
5. Roy-Camille, R., G. Saillant, and C. Mazel, Plating of thoracic, thoracolumbar, and lumbar injuries with pedicle screw plates. The Orthopedic clinics of North America, 1986. 17(1): p. 147-159.
6. Esses, S. and D.A. Bednar, The spinal pedicle screw: techniques and systems. Orthopaedic review, 1989. 18(6): p. 676-682.
7. depuysynthes, https://www.depuysynthes.com/patients/aabp/researchingtreatmentrecovery/surgery/procedures/pediclescrews.
8. depuysynthes., https://www.depuysynthes.com/hcp/spine/products/qs/EXPEDIUM-5-5-System.
9. Hicks, J.M., et al., Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine, 2010. 35(11): p. E465-E470.
10. Jutte, P. and R. Castelein, Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. European Spine Journal, 2002. 11(6): p. 594-598.
11. Blumenthal, S. and K. Gill, Complications of the Wiltse Pedicle Screw Fixation System. Spine, 1993. 18(13): p. 1867-1871.
12. Faraj, A. and J. Webb, Early complications of spinal pedicle screw. European spine journal, 1997. 6(5): p. 324-326.
13. Davne, S.H. and D.L. Myers, Complications of lumbar spinal fusion with transpedicular instrumentation. Spine, 1992. 17(6 Suppl): p. S184-9.
14. Li, G., et al., Complications associated with thoracic pedicle screws in spinal deformity. European Spine Journal, 2010. 19(9): p. 1576-1584.
15. Suk, S.-I., et al., Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine, 2001. 26(18): p. 2049-2057.
16. Wittenberg, R., et al., A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model. Spine, 1992. 17(6 Suppl): p. S121-8.
17. Burval, D.J., et al., Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine, 2007. 32(10): p. 1077-1083.
18. Lee, J., et al., The insertional torque of a pedicle screw has a positive correlation with bone mineral density in posterior lumbar pedicle screw fixation. The Journal of bone and joint surgery. British volume, 2012. 94(1): p. 93-97.
19. Halvorson, T.L., et al., Effects of bone mineral density on pedicle screw fixation. Spine, 1994. 19(21): p. 2415-2420.
20. Cook, S.D., et al., Biomechanical study of pedicle screw fixation in severely osteoporotic bone. The Spine Journal, 2004. 4(4): p. 402-408.
21. Lehman Jr, R.A., et al., Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine, 2003. 28(18): p. 2058-2065.
22. Hackenberg, L., T. Link, and U. Liljenqvist, Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density. Spine, 2002. 27(9): p. 937-942.
23. Hsu, C.C., et al., Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. Journal of Orthopaedic Research, 2005. 23(4): p. 788-794.
24. Okuyama, K., et al., Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. The Spine Journal, 2001. 1(6): p. 402-407.
25. Zindrick, M.R., et al., A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res, 1986. 203(99-112): p. 2.
26. Wu, J.-C., et al., Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurgical Focus, 2011. 31(4): p. E9.
27. Feng, Z.-H., et al., The technique of cortical bone trajectory screw fixation in spine surgery: a comprehensive literature review. AME Medical Journal, 2018. 3(1).
28. Tai, C.-L., et al., A biomechanical comparison of expansive pedicle screws for severe osteoporosis: the effects of screw design and cement augmentation. PloS one, 2015. 10(12): p. e0146294.
29. Martín-Fernández, M., et al., Potential risks of using cement-augmented screws for spinal fusion in patients with low bone quality. The Spine Journal, 2017. 17(8): p. 1192-1199.
30. Barakat, A.S., et al., Presentation and management of symptomatic central bone cement embolization. European Spine Journal, 2017: p. 1-9.
31. Santoni, B., et al., Cortical bone trajectory for lumbar pedicle screws. The Spine Journal, 2009. 9(5): p. 366-373.
32. Matsukawa, K., et al., Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. Clinical Spine Surgery, 2013. 26(6): p. E248-E253.
33. Kaye, I.D., et al., The Cortical Bone Trajectory for Pedicle Screw Insertion. JBJS reviews, 2017. 5(8): p. e13.
34. Matsukawa, K., et al., Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation? Spine, 2015. 40(15): p. E873-E878.
35. Hirano, T., et al., Structural characteristics of the pedicle and its role in screw stability. Spine, 1997. 22(21): p. 2504-2510.
36. Mai, H.T., et al., Differences in bone mineral density of fixation points between lumbar cortical and traditional pedicle screws. The Spine Journal, 2016. 16(7): p. 835-841.
37. Kojima, K., et al., Cortical bone trajectory and traditional trajectory—a radiological evaluation of screw-bone contact. Acta neurochirurgica, 2015. 157(7): p. 1173-1178.
38. Hung, C.-W., et al., Comparison of multifidus muscle atrophy after posterior lumbar interbody fusion with conventional and cortical bone trajectory. Clinical neurology and neurosurgery, 2016. 145: p. 41-45.
39. Matsukawa, K., et al., In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine, 2014. 39(4): p. E240-E245.
40. Zdeblick, T.A., et al., Pedicle screw pullout strength. Correlation with insertional torque. Spine, 1993. 18(12): p. 1673-1676.
41. Baluch, D.A., et al., Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine, 2014. 39(22): p. E1297-E1302.
42. Akpolat, Y.T., et al., Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine, 2016. 41(6): p. E335-E341.
43. Matsukawa, K., et al., Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. Journal of Neurosurgery: Spine, 2015. 23(4): p. 471-478.
44. Wray, S., et al., Pedicle screw placement in the lumbar spine: effect of trajectory and screw design on acute biomechanical purchase. Journal of Neurosurgery: Spine, 2015. 22(5): p. 503-510.
45. Ueno, M., et al., Should we use cortical bone screws for cortical bone trajectory? Journal of Neurosurgery: Spine, 2015. 22(4): p. 416-421.
46. Matsukawa, K., et al., Cortical bone trajectory for thoracic pedicle screws: a technical note. Clinical spine surgery, 2017. 30(5): p. E497-E504.
47. Xuan, J., et al., Minimally invasive cortical bone trajectory screws placement via pedicle or pedicle rib unit in the lower thoracic spine: a cadaveric and radiographic study. European Spine Journal, 2016. 25(12): p. 4199-4207.
48. Lill, C.A., et al., Mechanical performance of cylindrical and dual core pedicle screws in calf and human vertebrae. Archives of orthopaedic and trauma surgery, 2006. 126(10): p. 686-694.
49. Kueny, R.A., et al., Influence of the screw augmentation technique and a diameter increase on pedicle screw fixation in the osteoporotic spine: pullout versus fatigue testing. European Spine Journal, 2014. 23(10): p. 2196-2202.
50. Lu, W.W., et al., Loosening of sacral screw fixation under in vitro fatigue loading. Journal of Orthopaedic Research, 2000. 18(5): p. 808-814.
51. Sterba, W., et al., Biomechanical analysis of differing pedicle screw insertion angles. Clinical biomechanics, 2007. 22(4): p. 385-391.
52. Hadjipavlou, A.G., et al., Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct. Journal of spinal disorders, 1997. 10(1): p. 12-19.
53. Karataglis, D., et al., The role of the dorsal vertebral cortex in the stability of transpedicular screws: a biomechanical study in human cadaveric vertebrae. The Journal of bone and joint surgery. British volume, 2006. 88(5): p. 692-695.
54. Demir, T., N. Camuşcu, and K. Türeyen, Design and biomechanical testing of pedicle screw for osteoporotic incidents. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2012. 226(3): p. 256-262.
55. Wu, Z., S.A. Nassar, and X. Yang, Pullout performance of self-tapping medical screws. Journal of biomechanical engineering, 2011. 133(11): p. 111002.
56. Sheng, S.-R., et al., Cortical bone trajectory screws for the middle-upper thorax: An anatomico-radiological study. Medicine, 2016. 95(35).
57. Brantley, A., et al., The effects of pedicle screw fit. An in vitro study. Spine, 1994. 19(15): p. 1752-1758.
58. Yamagata, M., et al., Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine, 1992. 17(3 Suppl): p. S51-4.
59. Gates, T.A., et al., Biomechanical analysis of a novel pedicle screw anchor designed for the osteoporotic population. World neurosurgery, 2015. 83(6): p. 965-969.
60. Burr, D.B., et al., Does microdamage accumulation affect the mechanical properties of bone? Journal of biomechanics, 1998. 31(4): p. 337-345.
61. Lemaire, V., et al., Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. Journal of theoretical biology, 2004. 229(3): p. 293-309.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72208-
dc.description.abstract研究目的:
探討椎弓根螺釘之胸椎皮質骨路徑與傳統路徑的固定強度,以及經過疲勞負載測試後椎弓根螺釘之固定強度。
背景介紹:
皮質骨路徑為近年來提出的椎弓根螺釘植入路徑,其目的在使螺釘與骨密度較高的皮質骨有更多的接觸,以便增強螺釘的咬合。目前已有許多文獻探討腰椎皮質骨路徑的生物力學特性,然而僅有極少數的研究討論疲勞負載後對皮質骨路徑的影響,本研究以體外生物力學測試探討在疲勞負載測試前後的胸椎皮質骨路徑與傳統路徑的固定強度。
材料與方法:
本研究使用 39節人體屍骨胸椎試樣(T7-T12),由骨質密度測定儀測得試樣之平均骨質密度為0.961g/cm2(範圍:0.634-1.273g/cm2)。將人體試樣之椎骨分離並去除軟組織,由神經外科醫師在脊椎左右兩側分別施打皮質骨路徑與傳統路徑。實驗以螺釘種類分為兩組,組別一在兩個路徑都使用傳統多軸椎弓根螺釘(4.35 mm x 35 mm);組別二則是在皮質骨路徑使用皮質骨螺釘(5.0mm x 40 mm),傳統路徑使用的是傳統多軸椎弓根螺釘(5.0 mm x 40 mm)。再將所有試樣離散分配至控制組、疲勞負載組共兩組,疲勞負載參數為10-100 N、1 Hz、10,000循環,記錄疲勞負載時的位移變化量並定義「疲勞破壞量」,「疲勞破壞量」又可細分為「剛性破壞量」和「潛變破壞量」。由拉出測試之力與位移結果,可計算出「拉出強度」與「拉出剛性」。
結果:
本研究在疲勞負載部分,組別一和組別二的總破壞量在皮質骨路徑中不論是使用傳統螺釘或是皮質骨螺釘,其總破壞量皆小於傳統路徑(組別一:0.29(0.17) mm vs. 0.49(0.34) mm, p=0.061; 組別二:0.27(0.11) mm vs. 0.37(0.11) mm, p=0.008)。
在拉出強度的部分,在疲勞負載前組別一中皮質骨路徑的拉出強度小於傳統路徑(438(188) N vs. 536(226) N, p=0.061),但是在組別二皮質骨路徑的拉出強度則大於傳統路徑(799(369) N vs. 683(210) N, p=0.092),而經過10,000循環疲勞負載測試後,不論是組別一或組別二的皮質骨路徑與傳統路徑之拉出強度皆趨於接近(組別一:337(122) N vs. 394(103) N, p=0.193;組別二:765(465) N vs. 735(397) N, p=0.446)。
結論:
本研究結果顯示在疲勞破壞前,當使用傳統螺釘植入兩種路徑時,傳統路徑較皮質骨路徑會有較強的固定強度,因此不建議將傳統螺釘植入皮質骨路徑;但是若使用傳統螺釘植入傳統路徑對比於皮質骨螺釘植入皮質骨路徑時,皮質骨骨釘和路徑會有較強的固定強度。但是經過疲勞負載後,我們發現不論螺釘的種類,皮質骨路徑與傳統路徑之拉出強度會趨於接近。依據本研究之結果推論,當進行胸椎固定手術時,若沒有急性期的強度要求,兩種路徑和骨釘在穩定期的強度差異不大,醫師可根據病人的需求給予適當的路徑。
zh_TW
dc.description.abstractObjective:
To compare the fixation strengths of pedicle screws inserted via the cortical bone trajectory and the traditional trajectory, and to investigate the effect of fatigue loading on fixation strength.
Introduction:
Cortical bone trajectory is a relatively new technique for pedicle screw insertion. The cortical bone trajectory aims to improve fixation strength by increasing the contact between the screw and the denser cortical bone. Many papers studied the biomechanical characteristics of insertion using the cortical bone trajectory. However, the effect of fatigue loading on fixation strength of the cortical bone trajectory has received comparatively less attention. This study investigated the fixation strengths of thoracic cortical bone trajectory and traditional trajectory with the use of cortical pedicle screw and traditional pedicle screw by human cadaveric biomechanical tests both before and after fatigue loading.
Materials and methods:
Thirty-nine human cadaveric thoracic spine vertebrae (T7-T12) were used. The mean bone mineral density (BMD) of the specimens was 0.961 g/cm2 (range: 0.634- 1.273 g/cm2). The experiment consisted of two groups. In both groups, the cortical bone trajectory and traditional trajectory were used in the left and right pedicles of each vertebra, respectively. Group 1 used traditional poly-axial pedicle screws (4.35 mm x 35 mm) in both trajectories. Group 2 used traditional poly-axial pedicle screws (5.0mm x 40 mm) in the traditional trajectory and cortical screws (5.0mm x 40 mm) in the cortical bone trajectory. All specimens were randomly distributed into the control group and fatigue group. The peak-to-peak force and loading frequency of fatigue loading were 10-100 N and 1 Hz. The loading was vertically applied at the screw end to simulate the axial body force. The displacement history along the loading line during fatigue loading were recorded. The increase of the displacement at the end of fatigue loading was defined as the 'fatigue damage'. The 'fatigue damage' was further divided into 'stiffness damage' and 'creep damage'. From the force and displacement curve of the pullout test, the 'pullout strength' and 'pullout stiffness' were calculated.
Results:
The results of fatigue loading showed; both group 1 and group 2 exhibited less fatigue damage in the cortical bone trajectory than in the traditional trajectory (group 1: 0.29(0.17) mm vs. 0.49(0.34) mm, p=0.061; group 2: 0.27(0.11) mm vs. 0.37(0.11) mm, p=0.008).
Before the fatigue loading, the pullout strength of the cortical bone trajectory was lower than that of the traditional trajectory in group 1 (438(188) N vs. 536(226) N, p=0.061), and the pullout strength of the cortical bone trajectory was greater than that of the traditional trajectory in group 2 (799(369) N vs. 683(210) N, p=0.092). After 10,000 cycles fatigue loading, no difference in pullout strength was observed between the cortical bone trajectory and the traditional trajectory within either group 1 or group 2 (group 1: 337(122) N vs. 394(103) N, p=0.193;group 2: 765(465) N vs. 735(397) N, p=0.446).
Conclusion:
The results of this study showed that the use of traditional screw with traditional trajectory reached better strength than the traditional screw with cortical bone trajectory before fatigue loading; hence it is not suggested to use the traditional screw in the cortical bone trajectory. The pull out strength of cortical screw with cortical bone trajectory was better than the one of traditional screw with traditional trajectory before fatigue loading. However, we found both screw types at both trajectories reached similar fixation strength after fatigue loading. This may imply that the surgeon may choose the screw type and trajectory at their convenience if the fixation strength at the acute stage may not be a critical issue.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:29:01Z (GMT). No. of bitstreams: 1
ntu-107-R05548040-1.pdf: 3007186 bytes, checksum: 11db7c2a7a010b818c2fb7170226a991 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 脊椎基本架構 1
1.2 後方脊椎融合術 3
1.3 後方脊椎融合術常見的併發症 4
1.4 腰椎皮質骨路徑介紹與生物力學測試 5
1.4.1 腰椎皮質骨路徑介紹 5
1.4.2 腰椎皮質骨路徑之生物力學測試 8
1.5 胸椎皮質骨路徑介紹 14
1.6 疲勞負載文獻回顧 16
1.7 研究目的與動機 17
第二章 材料與方法 19
2.1 研究方法簡介 19
2.2 實驗儀器 20
2.2.1 BoseⓇ ElectroForceⓇ 5500 動靜態材料測試機 20
2.2.2 BoseⓇ ElectroForceⓇ 3510 動靜態材料測試機 20
2.3 實驗流程 21
2.3.1 試樣準備 21
2.3.2 椎弓根螺釘植入 24
2.3.3 試樣包埋 26
2.3.4 螺釘疲勞負載測試 27
2.3.5 螺釘拉出測試 30
2.4 資料分析 32
第三章 實驗結果 33
3.1 樣本數 33
3.2 X光影像結果與皮質骨路徑角度的量測 33
3.3 骨質密度 35
3.4 疲勞破壞 36
3.5 拉出強度與拉出剛性 38
3.5.1 拉出強度 38
3.5.2 拉出剛性 39
3.6 高骨密度組與低骨密度組之拉出強度與疲勞負載總破壞量 41
3.7 骨質密度、皮質骨路徑角度、疲勞破壞和拉出強度與拉出剛性之相關性 44
3.7.1 骨質密度和拉出強度與拉出剛性之相關性 44
3.7.2 皮質骨路徑之頭向角度與側向角度和拉出強度與拉出剛性之相關性 46
3.7.3 疲勞破壞和拉出強度與拉出剛性之相關性 47
第四章 討論 50
4.1 失敗樣本討論 50
4.2 X光影像結果討論 50
4.3 疲勞破壞討論 51
4.4 拉出強度與拉出剛性討論 51
4.5 高骨密度組與低骨密度組之拉出強度與疲勞負載總破壞量討論 52
4.6 骨質密度、皮質骨路徑角度、疲勞破壞和拉出強度與拉出剛性之相關性討論 53
4.7 實驗限制 54
第五章 結論與未來展望 56
參考文獻 57
dc.language.isozh-TW
dc.subject傳統路徑zh_TW
dc.subject疲勞負載zh_TW
dc.subject拉出強度zh_TW
dc.subject皮質骨路徑zh_TW
dc.subject椎弓根螺釘zh_TW
dc.subjectpedicle screwen
dc.subjectcortical bone trajectoryen
dc.subjecttraditional trajectoryen
dc.subjectpullout strengthen
dc.title疲勞負載對胸椎皮質骨螺釘生物力學特性之影響zh_TW
dc.titleThe Effect of Fatigue Loading on the Biomechanical Characteristics of Thoracic Cortical Screwen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文斌,賴達明
dc.subject.keyword椎弓根螺釘,皮質骨路徑,傳統路徑,疲勞負載,拉出強度,zh_TW
dc.subject.keywordpedicle screw,cortical bone trajectory,traditional trajectory,pullout strength,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201803617
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved