請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張?仁(Ching-Jin Chang) | |
| dc.contributor.author | Yao-Jen Chang | en |
| dc.contributor.author | 張耀仁 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:28:18Z | - |
| dc.date.available | 2020-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | REFERENCE Addison, J.B., C. Koontz, J.H. Fugett, C.J. Creighton, D. Chen, M.K. Farrugia, R.R. Padon, M.A. Voronkova, S.L. McLaughlin, R.H. Livengood, C.-C. Lin, J.M. Ruppert, E.N. Pugacheva, and A.V. Ivanov. 2015. KAP1 promotes proliferation and metastatic progression of breast cancer cells. In Cancer Res. Vol. 75. 344-355. Anvar, Z., M. Cammisa, V. Riso, I. Baglivo, H. Kukreja, A. Sparago, M. Girardot, S. Lad, I. De Feis, F. Cerrato, C. Angelini, R. Feil, P.V. Pedone, G. Grimaldi, and A. Riccio. 2016. ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. In Nucleic Acids Res. Vol. 44. 1118-1132. Bhatia, N., T.Z. Xiao, K.A. Rosenthal, I.A. Siddiqui, S. Thiyagarajan, B. Smart, Q. Meng, C.L. Zuleger, H. Mukhtar, S.C. Kenney, M.R. Albertini, and B. Jack Longley. 2013. MAGE-C2 promotes growth and tumorigenicity of melanoma cells, phosphorylation of KAP1, and DNA damage repair. In J. Invest. Dermatol. Vol. 133. 759-767. Cai, J., R. Gong, F. Yan, C. Yu, L. Liu, W. Wang, Y. Lin, M. Guo, W. Li, and Z. Huang. 2014. ZNF300 knockdown inhibits forced megakaryocytic differentiation by phorbol and erythrocytic differentiation by arabinofuranosyl cytidine in K562 cells. In PLoS ONE. Vol. 9. e114768. Calabretta, B., and D. Perrotti. 2004. The biology of CML blast crisis. In Blood. Vol. 103. American Society of Hematology. 4010-4022. Cammas, F., M. Mark, P. Dolle, A. Dierich, P. Chambon, and R. Losson. 2000. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development. 127:2955-2963. Castro-Diaz, N., G. Ecco, A. Coluccio, A. Kapopoulou, B. Yazdanpanah, M. Friedli, J. Duc, S.M. Jang, P. Turelli, and D. Trono. 2014. Evolutionally dynamic L1 regulation in embryonic stem cells. In Genes Dev. Vol. 28. 1397-1409. Cerny-Reiterer, S., A. Rabenhorst, G. Stefanzl, S. Herndlhofer, G. Hoermann, L. Müllauer, S. Baumgartner, C. Beham-Schmid, W.R. Sperr, C. Mannhalter, H. Sill, W. Linkesch, M. Arock, K. Hartmann, and P. Valent. 2015. Long-term treatment with imatinib results in profound mast cell deficiency in Ph+ chronic myeloid leukemia. In Oncotarget. Vol. 6. Impact Journals. 3071-3084. Chang, C.-J., Y.-L. Chen, and S.-C. Lee. 1998. Coactivator TIF1β Interacts with Transcription Factor C/EBPβ and Glucocorticoid Receptor To Induce α1-Acid Glycoprotein Gene Expression. In Mol Cell Biol. Vol. 18. 5880-5887. Chang, C.-W., H.-Y. Chou, Y.-S. Lin, K.-H. Huang, C.-J. Chang, T.-C. Hsu, and S.-C. Lee. 2008. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. In BMC Mol Biol. Vol. 9. 61. Chen, B., L.A. Gilbert, B.A. Cimini, J. Schnitzbauer, W. Zhang, G.-W. Li, J. Park, E.H. Blackburn, J.S. Weissman, L.S. Qi, and B. Huang. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. In Cell. Vol. 155. 1479-1491. Cheng, B., X. Ren, and T.K. Kerppola. 2014. KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. In Mol Cell Biol. Vol. 34. 2075-2091. Cheng, C.-T., C.-Y. Kuo, C. Ouyang, C.-F. Li, Y. Chung, D.C. Chan, H.-J. Kung, and D.K. Ann. 2016. Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. In Cancer Res. Vol. 76. 5006-5018. Choudhary, C., C. Kumar, F. Gnad, M.L. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen, and M. Mann. 2009. Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. In Science. Vol. 325. American Association for the Advancement of Science. 834-840. Cong, L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini, and F. Zhang. 2013. Multiplex genome engineering using CRISPR/Cas systems. In Science. Vol. 339. 819-823. Corbisier, P., L. Pinheiro, S. Mazoua, A.M. Kortekaas, P.Y. Chung, T. Gerganova, G. Roebben, H. Emons, and K. Emslie. 2015. DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials. Anal Bioanal Chem. 407:1831-1840. Czerwińska, P., S. Mazurek, and M. Wiznerowicz. 2017a. The complexity of TRIM28 contribution to cancer. In J. Biomed. Sci. Vol. 24. BioMed Central. 63. Czerwińska, P., P.K. Shah, K. Tomczak, M. Klimczak, S. Mazurek, B. Sozańska, P. Biecek, K. Korski, V. Filas, A. Mackiewicz, J.N. Andersen, and M. Wiznerowicz. 2017b. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. In Oncotarget. Vol. 8. Impact Journals, LLC. 863-882. Deprez, L., P. Corbisier, A.M. Kortekaas, S. Mazoua, R. Beaz Hidalgo, S. Trapmann, and H. Emons. 2016. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomol Detect Quantif. 9:29-39. Doench, J.G., N. Fusi, M. Sullender, M. Hegde, E.W. Vaimberg, K.F. Donovan, I. Smith, Z. Tothova, C. Wilen, R. Orchard, H.W. Virgin, J. Listgarten, and D.E. Root. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. In Nat Biotechnol. Vol. 34. Nature Research. 184-191. Doyle, J.M., J. Gao, J. Wang, M. Yang, and P.R. Potts. 2010. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. In Mol Cell. Vol. 39. 963-974. Elzinga, B.M., M.J. Nyhan, L.C. Crowley, T.R. O'Donovan, M.R. Cahill, and S.L. McKenna. 2013. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein. Am J Hematol. 88:455-462. Fearon, A.E., E.P. Carter, N.S. Clayton, E.H. Wilkes, A.-M. Baker, E. Kapitonova, B.A. Bakhouche, Y. Tanner, J. Wang, E. Gadaleta, C. Chelala, K.M. Moore, J.F. Marshall, J. Chupin, P. Schmid, J.L. Jones, M. Lockley, P.R. Cutillas, and R.P. Grose. 2018. PHLDA1 Mediates Drug Resistance in Receptor Tyrosine Kinase-Driven Cancer. In Cell Rep. Vol. 22. 2469-2481. Feng, Y., J. Gao, and M. Yang. 2011. When MAGE meets RING: insights into biological functions of MAGE proteins. In Protein Cell. Vol. 2. 7-12. Fitzgerald, S., K.M. Sheehan, A. O'Grady, D. Kenny, R. O'Kennedy, E.W. Kay, and G.S. Kijanka. 2013. Relationship between epithelial and stromal TRIM28 expression predicts survival in colorectal cancer patients. In Journal of Gastroenterology and Hepatology. Vol. 28. 967-974. Hirasawa, R., and R. Feil. 2008. A KRAB domain zinc finger protein in imprinting and disease. In Dev Cell. Vol. 15. 487-488. Huang, H.-M., and J.-C. Liu. 2009. c-Jun blocks cell differentiation but not growth inhibition or apoptosis of chronic myelogenous leukemia cells induced by STI571 and by histone deacetylase inhibitors. In J. Cell. Physiol. Vol. 218. Wiley Subscription Services, Inc., A Wiley Company. 568-574. Jacobs, F.M.J., D. Greenberg, N. Nguyen, M. Haeussler, A.D. Ewing, S. Katzman, B. Paten, S.R. Salama, and D. Haussler. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. In Nature. Vol. 516. 242-245. Kim, S., D. Kim, S.W. Cho, J. Kim, and J.S. Kim. 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012-1019. Kirschner, K.M., and K. Baltensperger. 2003. Erythropoietin promotes resistance against the Abl tyrosine kinase inhibitor imatinib (STI571) in K562 human leukemia cells. In Mol Cancer Res. Vol. 1. 970-980. Klein, E., H. Ben-Bassat, H. Neumann, P. Ralph, J. Zeuthen, A. Polliack, and F. Vanky. 1976. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer. 18:421-431. Kwong, Y.L., A.Y. Chan, L.C. Chan, K.F. Wong, and Y.C. Chu. 1992. Near-triploid myeloblastic transformation of chronic myeloid leukemia with bizarre blast morphology. Cancer Genet Cytogenet. 58:92-95. Laderoute, K.R., H.L. Mendonca, J.M. Calaoagan, A.M. Knapp, A.J. Giaccia, and P.J. Stork. 1999. Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. The Journal of biological chemistry. 274:12890-12897. Li, X., M. Ito, F. Zhou, N. Youngson, X. Zuo, P. Leder, and A.C. Ferguson-Smith. 2008. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. In Dev Cell. Vol. 15. 547-557. Li, X., and P. Leder. 2007. Identifying genes preferentially expressed in undifferentiated embryonic stem cells. BMC Cell Biol. 8:37. Li, X., Y.-K. Lee, J.-C. Jeng, Y. Yen, D.C. Schultz, H.-M. Shih, and D.K. Ann. 2007. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. In J Biol Chem. Vol. 282. 36177-36189. Lin, L.-F., C.-F. Li, W.-J. Wang, W.-M. Yang, D.D.-H. Wang, W.-C. Chang, W.-H. Lee, and J.-M. Wang. 2013. Loss of ZBRK1 contributes to the increase of KAP1 and promotes KAP1-mediated metastasis and invasion in cervical cancer. In PLoS ONE. Vol. 8. e73033. Lin, S., B.T. Staahl, R.K. Alla, and J.A. Doudna. 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. In Elife. Vol. 3. e04766. Liu, L., L. Xiao, X. Liang, L. Chen, L. Cheng, L. Zhang, X. Wu, Q. Xu, and C. Ma. 2017. TRIM28 knockdown increases sensitivity to etoposide by upregulating E2F1 in non-small cell lung cancer. In Oncol. Rep. Vol. 37. Spandidos Publications. 3597-3605. Naumann, S., D. Reutzel, M. Speicher, and H.J. Decker. 2001. Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res. 25:313-322. Nelson, C.E., C.H. Hakim, D.G. Ousterout, P.I. Thakore, E.A. Moreb, R.M. Castellanos Rivera, S. Madhavan, X. Pan, F.A. Ran, W.X. Yan, A. Asokan, F. Zhang, D. Duan, and C.A. Gersbach. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. In Science. Vol. 351. 403-407. Nimmanapalli, R., L. Fuino, C. Stobaugh, V. Richon, and K. Bhalla. 2003. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. In Blood. Vol. 101. American Society of Hematology. 3236-3239. O'Hare, T., M.W.N. Deininger, C.A. Eide, T. Clackson, and B.J. Druker. 2011. Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. In Clin. Cancer Res. Vol. 17. American Association for Cancer Research. 212-221. Okamoto, K., I. Kitabayashi, and Y. Taya. 2006. KAP1 dictates p53 response induced by chemotherapeutic agents via Mdm2 interaction. Biochem Biophys Res Commun. 351:216-222. Peng, H., G.E. Begg, D.C. Schultz, J.R. Friedman, D.E. Jensen, D.W. Speicher, and F.J. Rauscher. 2000. Reconstitution of the KRAB-KAP-1 repressor complex: a model system for defining the molecular anatomy of RING-B box-coiled-coil domain-mediated protein-protein interactions. In J Mol Biol. Vol. 295. 1139-1162. Pineda, C.T., S. Ramanathan, K. Fon Tacer, J.L. Weon, M.B. Potts, Y.-H. Ou, M.A. White, and P.R. Potts. 2015. Degradation of AMPK by a cancer-specific ubiquitin ligase. In Cell. Vol. 160. 715-728. Quenneville, S., G. Verde, A. Corsinotti, A. Kapopoulou, J. Jakobsson, S. Offner, I. Baglivo, P.V. Pedone, G. Grimaldi, A. Riccio, and D. Trono. 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. In Mol Cell. Vol. 44. 361-372. Raitano, A.B., J.R. Halpern, T.M. Hambuch, and C.L. Sawyers. 1995. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A. 92:11746-11750. Rhoads, A., and K.F. Au. 2015. PacBio Sequencing and Its Applications. In Genomics Proteomics Bioinformatics. Vol. 13. 278-289. Ryan, R.F., D.C. Schultz, K. Ayyanathan, P.B. Singh, J.R. Friedman, W.J. Fredericks, and F.J. Rauscher. 1999. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. In Mol Cell Biol. Vol. 19. 4366-4378. Sampath Kumar, A., M.K.Y. Seah, K.Y. Ling, Y. Wang, J.H.L. Tan, S. Nitsch, S.L. Lim, C. Lorthongpanich, H. Wollmann, D.H.P. Low, E. Guccione, and D.M. Messerschmidt. 2017. Loss of maternal Trim28 causes male-predominant early embryonic lethality. In Genes Dev. Vol. 31. 12-17. Santos, J., and J. Gil. 2014. TRIM28/KAP1 regulates senescence. Immunol Lett. 162:281-289. Schultz, D.C., K. Ayyanathan, D. Negorev, G.G. Maul, and F.J. Rauscher, 3rd. 2002. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16:919-932. Sedlazeck, F.J., P. Rescheneder, M. Smolka, H. Fang, M. Nattestad, A. von Haeseler, and M.C. Schatz. 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 15:461-+. Seki, Y., A. Kurisaki, K. Watanabe-Susaki, Y. Nakajima, M. Nakanishi, Y. Arai, K. Shiota, H. Sugino, and M. Asashima. 2010. TIF1beta regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. In Proc Natl Acad Sci USA. Vol. 107. National Acad Sciences. 10926-10931. Singh, K., M. Cassano, E. Planet, S. Sebastian, S.M. Jang, G. Sohi, H. Faralli, J. Choi, H.-D. Youn, F.J. Dilworth, and D. Trono. 2015. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation. In Genes Dev. Vol. 29. 513-525. Sripathy, S.P., J. Stevens, and D.C. Schultz. 2006. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. In Mol Cell Biol. Vol. 26. 8623-8638. Walker, M.M., and P.E. Wanda. 1987. Immunochemical detection of cell cycle synchronization in a human erythroleukemia cell line, K562. In Journal of Histochemistry and Cytochemistry. Vol. 35. SAGE PublicationsSage CA: Los Angeles, CA. 1143-1148. Wang, C., and S.P. Goff. 2017. Differential control of retrovirus silencing in embryonic cells by proteasomal regulation of the ZFP809 retroviral repressor. In Proc Natl Acad Sci USA. Vol. 114. National Acad Sciences. E922-E930. Wang, C., A. Ivanov, L. Chen, W.J. Fredericks, E. Seto, F.J. Rauscher, 3rd, and J. Chen. 2005. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 24:3279-3290. Wang, C., F.J. Rauscher, 3rd, W.D. Cress, and J. Chen. 2007. Regulation of E2F1 function by the nuclear corepressor KAP1. J Biol Chem. 282:29902-29909. Wang, Y., J. Jiang, Q. Li, H. Ma, Z. Xu, and Y. Gao. 2016. KAP1 is overexpressed in hepatocellular carcinoma and its clinical significance. In Int. J. Clin. Oncol. Vol. 21. Springer Japan. 927-933. White, D., I.U. Rafalska-Metcalf, A.V. Ivanov, A. Corsinotti, H. Peng, S.-C. Lee, D. Trono, S.M. Janicki, and F.J. Rauscher. 2012. The ATM Substrate KAP1 Controls DNA Repair in Heterochromatin: Regulation by HP1 Proteins and Serine 473/824 Phosphorylation. In Mol Cancer Res. Vol. 10. American Association for Cancer Research. 401-414. Wolf, D., and S.P. Goff. 2009. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 458:1201-1204. Wolf, G., P. Yang, A.C. Fuchtbauer, E.M. Fuchtbauer, A.M. Silva, C. Park, W. Wu, A.L. Nielsen, F.S. Pedersen, and T.S. Macfarlan. 2015. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev. 29:538-554. Yang, B., S.M. O'Herrin, J. Wu, S. Reagan-Shaw, Y. Ma, K.M. Bhat, C. Gravekamp, V. Setaluri, N. Peters, F.M. Hoffmann, H. Peng, A.V. Ivanov, A.J. Simpson, and B.J. Longley. 2007. MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res. 67:9954-9962. Zeng, L., K.L. Yap, A.V. Ivanov, X. Wang, S. Mujtaba, O. Plotnikova, F.J. Rauscher, and M.-M. Zhou. 2008. Structural insights into human KAP1 PHD finger-bromodomain and its role in gene silencing. In Nat Struct Mol Biol. Vol. 15. 626-633. Zeng, Y., W. Wang, J. Ma, X. Wang, M. Guo, and W. Li. 2012. Knockdown of ZNF268, which is transcriptionally downregulated by GATA-1, promotes proliferation of K562 cells. In PLoS ONE. Vol. 7. e29518. Zhang, F., Y. Wen, and X. Guo. 2014. CRISPR/Cas9 for genome editing: progress, implications and challenges. In Hum Mol Genet. Vol. 23. Oxford University Press. R40-46. Zlotorynski, E. 2017. Epigenetics: Maternal TRIM28 for male embryos. In Nat Rev Mol Cell Biol. Vol. 18. Nature Research. 138-139. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72196 | - |
| dc.description.abstract | 第一部份: TRIM28量化調控之轉錄抑制,影響慢性骨髓性白血病細胞—K562的細胞生長。 TRIM28被認為是胚胎幹細胞中的必要基因,在小鼠的生殖細胞中剔除Trim28基因會造成老鼠胚胎在受孕後8.5天時死亡。相較於正常的組織之中,TRIM28已被證明會在許多腫瘤中呈現過量表現,此過量表現會促進癌細胞的增生和轉移。K562是一種急性轉化期的慢性骨髓性白血病的癌細胞,其染色體組型呈現不正常的類三倍體並且伴隨著不尋常的急性生理狀態,是常用來模擬紅血球細胞和血小板的前驅細胞。在此次的研究中,我們利用CRISPR/Cas9系統對K562細胞中TRIM28基因的套數加以編輯,並發現藉由改變基因體中等位基因的套數來降低TRIM28的表現量可以抑制K562細胞的生長,並促進期其對抗癌藥物的敏感性。 第二部分: 在TRIM28蛋白RBCC結構區域上的後轉錄性修飾是一關鍵因子,用以調控KRAB-鋅指蛋白與TRIM28的結合。 TRIM28(也稱作KAP1或TIF1-β)是一個表觀遺傳學上重要的調控者,已知可以藉由與異染色質蛋白(HP1)和鋅指蛋白(ZFPs or ZNFs)的交互作用來調控基因表現。Krüppel-associated box (KRAB)結構區域由約75個胺基酸所組成,存在於三分之一的人類C2H2類型的鋅指蛋白中。TRIM28藉由其RBCC (RING finger, B-box, and coiled coil)結構區域與KRAB結構區域相接合。作為轉錄抑制子,TRIM28和KRAB-鋅指蛋白的交互作用,可調控KRAB-鋅指蛋白所結合之特定區域中的基因表現。與許多的TRIM蛋白相同,TRIM28被認為對必須形成聚合體化後才具有共同抑制子之功能。然而,調控其聚合體化的詳細機制目前尚未可知。 在人類與小鼠的TRIM28蛋白的RBCC結構區域上發現三個可以被乙醯化的賴氨酸位置,分別是人類的266、304、340殘基和小鼠相對應的267、305、341殘基。在此次研究中,我們證實了Trim28 K305Q突變蛋白(模仿賴氨酸305被乙醯化之老鼠Trim28蛋白)無法與KRAB-鋅指蛋白結合,但並不影響其聚合體結構之形成。 | zh_TW |
| dc.description.abstract | PART I: A Dosage-Dependent Regulation of Transcriptional Repression by TRIM28 Affects the Cell Proliferation in Chronic Myeloid Leukemia Cells– K562. TRIM28 is considered as an essential gene in embryonic stem cells, and the knockout of Trim28 in mouse germ-line cells cause embryonic lethal at day E8.5. Compared with normal tissue, overexpression of TRIM28 has been demonstrated in many tumors, which promotes proliferation and metastasis of the cancer cells. K562, a model of common progenitor of erythroblast and megakaryocyte, is a human chronic myeloid leukemia (CML) cell line in terminal blast crisis in which near-triploidy with complex karyotypic abnormalities occurred together with unusual blast morphology. In this study, we used CRISPR/Cas9 system to edit the copy number of TRIM28 gene in K562 cells, and revealed that down-regulating the expression of TRIM28 through genomic alternation of copy number allele would suppress the proliferation of K562 Cells, and induce the sensitivity of anti-cancer drugs. Part II: The Post-translational Modification of TRIM28 at RBCC Domain is Critical to switch the interaction of KRAB-ZFPs and TRIM28. TRIM28 (also known as KAP1 or TIF1-β) is a key epigenetic modifier known to regulate gene expression via interaction with HP1 and zinger finger proteins (ZFPs or ZNFs). The Krüppel-associated box (KRAB) domain is about 75 amino acids found in approximately one-third of human C2H2-type ZNFs. The RBCC (RING finger, B-box, and coiled coil) domain of TRIM28 is responsible for its interaction with KRAB domain. Interactions between TRIM28 and KRAB-ZNFs have been shown to function as transcriptional repressor to regulate gene expression at the KRAB-ZFPs specific binding loci. Similar to many TRIM proteins, oligomerization of TRIM28 was considered as a requirement for its co-repressor activity. However, the underlying mechanism(s) governing its oligomerization is poorly understood. Three acetylated lysine residues of TRIM28 from both human (K266, K304, and K340) and mouse (K267, K305, and K341) have been identified. In present study, we demonstrated that Trim28 K305Q mutant protein (the mimic of mouse Trim28/Ac-K305) resulted in failure of interacting with KRAB-ZFPs, but did not affect the forming of its oligomer structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:28:18Z (GMT). No. of bitstreams: 1 ntu-107-D03b46009-1.pdf: 4533124 bytes, checksum: fb61b5eb5edf8d728eebfda38adc66d2 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 I 第一部份: TRIM28量化調控之轉錄抑制,影響慢性骨髓性白血病細胞—K562的細胞生長。 I 第二部分: 在TRIM28蛋白RBCC結構區域上的後轉錄性修飾是一關鍵因子,用以調控KRAB-鋅指蛋白與TRIM28的結合。 II ABSTRACT III PART I: A Dosage-Dependent Regulation of Transcriptional Repression by TRIM28 Affects the Cell Proliferation in Chronic Myeloid Leukemia Cells– K562. III Part II: The Post-translational Modification of TRIM28 at RBCC Domain is Critical to switch the interaction of KRAB-ZFPs and TRIM28. IV 1. INTRODUCTION 1 1.1 General function of TRIM28 1 1.2 The Post-Translational Modifications of TRIM28 3 1.3 The Complexity of TRIM28 Contribution to Cancer 5 1.4 The Krüppel-associated box containing zinc finger proteins 6 1.5 Chronic Myeloid Leukemia and Bcr-Abl Fusion Protein 8 1.6 SAHA Induces TRIM28-RBCC Acetylation and K562 Differentiation 9 2. MATERIALS AND METHODS 11 2.1 Cell Lines and Cell Culture 11 G1/S phase synchronization 12 2.2 Single Guide RNA (sgRNA) Preparation 12 Design sgRNA targeting sequence of TRIM28 12 DNA template assembly 12 In vitro T7 transcription and sgRNA purification 13 2.3 Cas9 RNP Assembly and Nucleofection 14 2.4 Analysis of TRIM28 Knockout by Genomic PCR 14 2.5 Deep sequencing analysis of on-target and off-target sites 15 Amplicon template preparation 15 Data analysis 16 2.6 Genomic DNA Extraction 16 2.7 Copy Number Variation Detection by Quantitative Droplet Digital PCR (ddPCR) 17 2.8 Analysis of HDR by Restriction Digestion 18 2.9 Preparation of Whole Cell Extraction 18 2.10 Preparation of SDS-Polyacrylamide Gel (PAGE) 19 2.11 Western Blot Analysis 20 2.12 Cell Proliferation Assay 21 2.13 Cell Cycle and Analysis 22 2.14 Annexin V and Propidium Iodide Assay 22 2.15 DNA Transfection 23 2.16 Immunoprecipitation Assay 23 2.17 Peptide Preparation and Identification by Mass Spectrometry 24 In gel digestion 24 Peptide identification by mass spectrometry 26 2.18 Clariom D Whole Transcriptome Microarray Analysis 27 2.19 RNA Extraction and Reverse Transcription 28 2.20 Statistical Analysis 28 3. RESULTS 29 PART I: A Dosage-Dependent Regulation of Transcriptional Repression by TRIM28 Effects the Cell Proliferation in Chronic Myeloid Leukemia Cells– K562. 29 3.1 Genomic Alterations of TRIM28 in Human Chronic Myeloid Leukemia Cells– K562 via Cas9-RNP Mediated Genome Editing 29 3.2 Determine the Expression Level of TRIM28 in Cas9-RNP Edited Clones 31 3.3 Sequencing of on- and potential off-target sites 32 3.4 Quantitative Droplet Digital PCR Reveals the Ratio of Knockout Alleles of TRIM28 in Triploid K562 Genome 34 3.5 A Dosage Effect of TRIM28 Significantly promotes the Cell Proliferation of K562 Cells. 35 3.6 The Expression of TRIM28 Inversely Related to Apoptosis and Drug Sensitivity 36 3.7 Clariom D Whole Transcriptome Microarray Analysis 39 Part II: The Post-translational Modification of TRIM28 at RBCC Domain is a Critical Key to switch the interaction of KRAB-TRIM28 Corepressor Complex 41 3.8 The interaction with KRAB-ZFPs is Disrupted by Acetylation of Trim28 on K305 41 3.9 The Acetylation of Trim28 K305 not Affects the Ability of Homo-oligomer Formation. 42 4. DISCUSSIONS 44 Apoptosis Phenotype in TRIM28 Knockdown Cells. 45 5. FIGURES 47 Figure 5.1 Genomic Alterations of TRIM28 in Human Chronic Myeloid Leukemia Cells– K562 via Cas9-RNP Mediated Genome Editing 47 Figure 5.2 The Expression of TRIM28 is Correlated with the Genome Type of Each Clone 50 Figure 5.3 Amplicon Template Preparation for Deep Sequencing 52 Figure 5.4 Structure Variation of TRIM28 in Each KO Clones 55 Figure 5.5 Copy Number Variation (CNV) of TRIM28 in KO Clones by Quantitative Droplet Digital PCR 57 Figure 5.6 The Expression Level of TRIM28 Regulates the K562 Cell Proliferation 60 Figure 5.7 The Expression of TRIM28 Inversely Related to Apoptosis and Anti-cancer Drug Sensitivity. 62 Figure 5.8 66 Figure 5.9 The interaction with KRAB-ZFPs is Disrupted by Acetylation of Trim28 on K304 68 Figure 5.10 The Acetylation of Trim28 K305 not Affect the Ability of Homo-oligomer Formation. 71 . 6. TABLES 73 6.1 The End-complimentary Oligonucleotides of sgRNA DNA Template 73 6.2 The Target Sequence of Cas9-induced Site-specific Double-strand DNA Breaks on TRIM28 74 6.3 Primer List 75 6.4 Internal Primer for Amplicon Template Preparation 76 6.5 Structure Variation of On-target and Off-target Site 78 6.6 Percentages of cells within the specific cell cycle stage 79 REFERENCE 80 | |
| dc.language.iso | en | |
| dc.subject | CRISPR/Cas9 | zh_TW |
| dc.subject | 乙醯化 | zh_TW |
| dc.subject | KRAB-鋅指蛋白 | zh_TW |
| dc.subject | 慢性骨髓性白血病 | zh_TW |
| dc.subject | K562 | zh_TW |
| dc.subject | TRIM28 | zh_TW |
| dc.subject | CRISPR/Cas9 | en |
| dc.subject | Chronic Myeloid Leukemia | en |
| dc.subject | Acetylation | en |
| dc.subject | KRAB-Zinc Finger Proteins | en |
| dc.subject | K562 | en |
| dc.subject | TRIM28 | en |
| dc.title | 利用CRISPR/Cas9 基因編輯技術研究TRIM28 在人類慢性骨髓性白血病細胞中之功能 | zh_TW |
| dc.title | The Functional Analysis of TRIM28 in Chronic Myeloid Leukemia Cells by Using CRISPR/Cas9 Mediated Genome Editing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 凌嘉鴻(Steven Lin) | |
| dc.contributor.oralexamcommittee | 張震東(Geen-Dong Chang),張茂山(Mau-Sun Chang),譚賢明(Bertrand Tan),蘇文琪(Wen-Chi Su) | |
| dc.subject.keyword | TRIM28,K562,慢性骨髓性白血病,CRISPR/Cas9,乙醯化,KRAB-鋅指蛋白, | zh_TW |
| dc.subject.keyword | TRIM28,K562,Chronic Myeloid Leukemia,CRISPR/Cas9,Acetylation,KRAB-Zinc Finger Proteins, | en |
| dc.relation.page | 87 | |
| dc.identifier.doi | 10.6342/NTU201803781 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
