請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72194完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳靜宜(Ching-Yi Chen),王翰聰(Hang-Tsung Wang) | |
| dc.contributor.author | Jyun-Wei Chen | en |
| dc.contributor.author | 陳峻偉 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:28:12Z | - |
| dc.date.available | 2020-08-18 | |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-16 | |
| dc.identifier.citation | 中央畜產會。2018。飼料與穀物資訊 – 草食動物飼料原料價格。中央畜產會。台北市。
中央氣象局。氣候統計 – 每月氣象。中央氣象局。台北市。 行政院農業委員會。2016。農業統計要覽(105年)。行政院農業委員會,台北市。 曲永利、吳健豪、劉立成、張永根。2010。應用CMP模型改善日糧能氮平衡和提高奶牛生產性能的效果評價。動物營養學報22: 310 – 317。 李應煌。1988。燕麥不同青刈期產量及營養成分變化。嘉義農學報17: 115 – 124。 李鵬。2011。日糧能氮瘤胃釋放同步化及能量、蛋白水平對荷斯坦奶牛日糧氮利用效率影響的研究。碩士論文。山東農業大學動物營養與飼料科學。 呂禮佳。2013。推動種植本土芻料以替代進口乾草之成效。農政與農情257。行政院農業委員會,台北市。 呂禮佳。2013。推動種植本土芻料以替代進口乾草之成效。農政與農情257期。行政院農業委員會,台北市。 呂秀英。2001。台灣牛乳生產成本與收益之分析。行政院農業委員會畜產試驗所1089號報告。農業經營管理年刊第七期。 吳春利。2001。畜牧學實習(飼料分析)。合記圖書出版社,台北市。 林育安、林榮信、陳光堯、張伸彰。2003。台灣地區牧草種類與應用。農業推廣手冊8。國立宜蘭大學農業推廣委員會,宜蘭縣。 施意敏。2015。臺灣冬季芻料的新選擇 – 燕麥。酪農天地112。行政院農業委員會畜產試驗所,台南市。 胡同嘉、陳嘉昇、王翰聰、陳嫚嫻、徐濟泰。2012。反芻動物替代飼料資源。中國畜牧學會會誌41: 33 – 46。 俞益、陳佩度、劉大鈞。1998。蓧麥與野紅燕麥雜交的細胞遺傳學研究。南京農業大學學報21: 1 – 6。 陳惠欣、孫珮瑛、周怡伶、徐宏元。2013。我國農地運用與變遷之研究。行政院主計總處研究報告。 畜牧要覽(草食家畜篇)。2008。華香園出版社。台北市。 葉益男。2014。台灣活化休耕地種植紅燕麥之可行性分析。碩士論文。國立台灣大學生物資源暨農學院農業經濟學系。 盧啟信。2013。活化休耕地轉作牧草及青割玉米。臺南區農業專訊83。 盧淑華、朱德民、呂宗佳。1986。不同期作下光合產物始源、積存及分配與玉米產量之關係。國立中興大學農學院農林學報 34、35: 121 – 134. 鄭殿升、張宗文。2011。大粒裸燕麥(蓧麥)(Avena nuda L.)起源及分類問題的探討。植物遺傳資源學报12: 667 – 670。 劉明宗、曾美倉。1984。燕麥臺大選一號週年栽培試驗。畜產研究 17:11-23。 蕭素碧、張世融、顏素芬。2009。臺灣牧草地及雜草之經營管理。中華民國雜草學會會刊, 30: 77-94。 蕭素碧、梁世祥。2013。芻料用燕麥介紹。畜產專訊85: 16 – 17。行政院農業委員會,台北市。 Aderinboye, R.Y., A. O. Akinlolu, M. A. Adeleke, G. O. Najeem, V. O. A. Ojo, O. A. Isah, and O. J. Babayemi. 2016. In vitro gas production and dry matter degradation of four browse leaves using cattle, sheep and goat inocula. Slovak Journal of Animal Science 49: 32 – 43. Ahmad, S., H. Ali, A. U. Rehman, R. J. Z. Khan, W. Ahmad, Z. Fatima, G. Abbas, M. Irfan, H. Ali, M. A. Khan, and M. Hasanuzzaman. 2015. Measuring leaf area of winter cereals by different techniques: a comparison. Pakistan Journal of Life and Social Sciences 13: 117 – 125. Anassori, E., B. Dalir-Naghadeh, R. Pirmohammadi, A. Taghizadeh, S. Asri-Rezaei, S. Farahmand-Azar, and M. Besharati, M. Tahmoozi. 2012. In vitro assessment of the digestibility of forage based sheep diet, supplemented with raw garlic, garlic oil and monensin. Veterinary Research Forum 3: 5 – 11. Baumont, R. 1996. Palatability and feeding behaviour in ruminants. A review. Annales de Zootechnie 45: 385 – 400. Beyihayo, G. A., R. Omaria, C. Namazzi, and A. Atuhaire. 2015. Comparison of in vitro digestibility using slaughtered and istulated cattle as sources of inoculum. Uganda Journal of Agricultural Sciences 16: 93 – 98. Blümmel, M., and E. R. Ørskov. 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology 40: 109 – 119. Boga, M., S. Yurtseven, U. Kilic, S. Aydemir, and T. Polat. 2014. Determination of nutrient contents and in vitro gas production values of some legume forages grown in the harran plain saline soils. Asian-Australasian Journal of Animal Sciences 27: 825 – 831. Brethauer, S., and C. E. Wyman. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology 101: 4862 – 4874. Chaney, A. L., and I. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry 8: 130 – 132. Chatterton, N. J., K. A. Watts, K. B. Jensen, P. A. Harrison, and W. H. Horton. 2006. Nonstructural carbohydrates in oat forage. Journal of Nutrition 136: 2111 – 2113. Chen, Y. K., A.N. Pell, L. E. Chase, and P. Schofield. 1999. Rate and extent of digestion of the ethanol-soluble and neutral detergent- insoluble fractions of corn grain. Journal of Animal Science 77: 3077 – 3083. Cho, S., D. T. Mbiriri, K. Shim, A. L. Lee, S. J. Oh, J. Yang, C. Ryu, Y. H. Kim, K. S. Seo, J. I. Chae, Y. K. Oh, and N. J. Choi. 2014. The Influence of Feed Energy Density and a Formulated Additive on Rumen and Rectal Temperature in Hanwoo Steers. Asian-Australasian Journal of Animal Sciences 27: 1652 – 1662. Chrenková, M., Z. Čerešňáková, M. R. Weisbjerg, Z. Formelová, M. Poláčiková, and M. Vondráková. 2014. Characterization of proteins in feeds according to the CNCPS and comparison to in situ parameters. Czech Journal of Animal Science 59: 288 – 295. Contreras-Govea, and F. E., K. A. Albrecht. 2006. Forage production and nutritive value of oat in autumn and early summer. Crop Science 46: 2382 – 2386. Cooker, B. A., C. J. Sniffen, W. H. Hoover, and L. L. Johnson. 1978. Solvents for soluble nitrogen measurements in feed stuffs. Journal of Dairy Science 61: 437 – 447. Craig, W. M., D. R. Brown, G. A. Broderick, and D. B. Ricker. 1987. Post-prandial compositional changes of fluid- and particle-associated ruminal microorganisms. Journal of Animal Science 65: 1042 – 1048. Fox, D. G., L. O. Tedeschi, T. P. Tylutki, J. B. Russell, M. E. Van Amburgh, and L. E. Chase. 2004. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology 112: 29 – 78. France, J. J. Dijkstra, M. S. Dhanoa, S. Lopez, and A. Bannink. 2000. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83: 143 – 150. Hong, J. 1985. Optimal substrate feeding policy for a fed batch fermentation with substrate and product inhibition kinetics. Biotechnology and Bioengineering 28: 1421 – 1431. Iqbal, M. W., Q. Zhang, Y. Yang, L. Li, C. Zou, C. Huang, and B. Lin. 2018. Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions. Journal of Applied Animal Research 46: 740 – 748. Kafilzadeh, F., and N. Heidary. 2013. Chemical composition, in vitro digestibility and kinetics of fermentation of whole-crop forage from 18 different varieties of oat (Avena sativa L.). Journal of Applied Animal Research 41: 61 – 68. Kibon, A., and E. R. Ørskov. 1993. The use of degradation characteristics of browse plants to predict intake and digestibility by goats. Animal Production 57: 247 – 251. Kohler, G .O. 1944. The effect of stage of growth on the chemistry of the grasses. Journal of Biological Chemistry 152: 215 – 223. Krishnamoorth, U., H. Solle, H. Steingas, and K. H. Menke. 1991. A comparative study on rumen fermentation of energy supplements in vitro. Journal of Animal Physiology and Animal Nutrition 65: 28 – 35. Latham, M. J., M. Elisabet Shearp, and J. D. Sutton. 1971. The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. Journal of Applied Bacteriology 34: 452 – 434. Liu, K., K. Mahmood, 2015. Nutrient composition and protein extractability of oat forage harvested at different maturity stages as compared to grain. Journal of Agricultural Science 7: 50-58. López, S., M. D. Carro, J. S. Gonzàlez, and F. J. Ovejero. 1998. Comparison of different in vitro and in situ methods to estimate the extent and rate of degradation of hays in the rumen. Animal Feed Science and Technology 73: 99 – 113. Makkar, H. P. S. 2002. Application of the in vitro gas method in the evaluation of feed resources and enhancement of nutritional value of Tannin-rich tree/browse leaves and agro-industrial by-products. Proceedings of the final review meeting of an IAEA Technical Co-operation Regional AFRA Project organized by the joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture held on 25-29 November 2000. Cairo, Egypt. p23-40. McDonald, I. 1981. A revised model for the estimation of protein degradability in the rumen. Journal of Agricultural Science 96: 251 – 252. Nelson, B. D., E. D. Ellzey, C. Montgomery, and E. B. Morgan. 1969. Factors affecting the variability of an in vitro rumen fermentation technique for estimating forage quality. Journal of Dairy Science 55: 358 – 366. Michalet-Doreau, B., and M.Y. Ould-Bah. 1992. In vitro and in sacco methods for the estimation of dietary nitrogen degradability in the rumen: a review. Animl Feed Science and Technology 40: 57 – 86. Nocek, J. E., and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. Journal of Dairy Science 71: 2070 – 2107. Mould, F.L., K.E. Kliem, R. Morgan, and R.M. Mauricio. 2005. In vitro microbial inoculum: A review of its function and properties. Animal Feed Science and Technology 123 – 124: 31 – 50. Orpin, C. G. 1976. Studies on the Rumen Flagellate Sphaeromonas communis. Journal of General Microbiology 94: 270 – 280. Ørskov, E. R., and I. McDonald. 1970. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science 92: 499 – 503. Ørskov, E. R., and M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied Science, London and New York. Pell, A. N., and P. Schofield. 1993. Computerized monitoring of gas production to measure forage digestion in vitro. Journal of Dairy Science 76: 1063 – 1073. Rajkumara, S. 2008. Lodging in cereals – a review. Agricultural Reviews 29: 55 – 60. Rani, K. Y., and V. S. R. Rao. 1999. Control of fermenters – review. Bioprocess Engineering 21: 77 – 88. Robert, W. W. 1995. The oat crop: Production and utilization. London: Chapman & Hall. Rymer, C., J. A. Huntington, and D. I. Givens. 1999. Effects of inoculum preparation method and concentration, method of inoculation and pre-soaking the substrate on the gas production profile of high temperature dried grass. Animal Feed Science and Technology 78: 199 – 213. Sniffen, C. J., J. D. O'Connor, and P. J. Van Soes. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70: 3562 – 3577. Soder, K.J. 2005. Technical note: Influence of rumen inoculum source on in vitro dry matter digestibility of pasture. The Professional Animal Scientist 21: 45 – 49. Sosa, A., J. Galindo, R. Bocourt, R. Rodríguez, N. Albelo, and A. Oramas. 2010. Effect of Aspergillus oryzae on the rumen fermentation of Pennisetum purpureum cv. Cuba CT-115 through the in vitro gas technique. Cuban Journal of Agricultural Science 44: 151 – 155. Stokes, S. R., W. H. Hoover, T. K. Miller, and R. P. Manski. 1990. Impact of carbohydrate and protein levels on bacterial metabolism in continuous culture. Journal of Dairy Science 74: 860 – 870. Tilley, J. M. A., and R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18: 104 – 111. Towne, G, and T. G. Nagaraja. 1989. Occurrence and diurnal population fluctuations of the ruminal protozoan microcetus lappus. Applied and Environmental Microbiology 65: 1042 – 1048. Van Gylswyk, N. O., K. Wejdemar, and K. Kulander. 1992. Comparative growth rates of various rumen bacteria in clarified rumen fluid from cows and sheep fed different diets. Applied and Environmental Microbiology 58: 99 – 105. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in in relation to animal nutrition. Journal of Dairy Science 74: 3583 – 3597. Verbelen, P. J., D. P. D. Schutter, F. Delvaux, K. J. Verstrepen, and F. R. Delvaux. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnology Letters 28: 1515 – 1525. Watson, E. R., P. Lapins, and R. J. W. Barron. 1976. Effect of waterlogging on the growth, grain and straw yield of wheat, barley and oats. Australian Journal of Experimental Agriculture and Animal Husbandry 16: 114 – 122. Weaver, D.E., C. E. Coppock, G. B. Lake, and R. W. Everett. 1978. Effect of maturation on composition and in vitro dry matter digestibility of corn plant parts. Journal of Dairy Science 61: 1782 – 1788. Zodoks, J. C., T. T. Chang, and C. F. Konzak. 1974. A decimal code for the growth stages of cereals. Weed Research 14: 415 – 421. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72194 | - |
| dc.description.abstract | 台灣冬季存在牧草短缺的困境,且由於酪農普遍生產成本偏高,而種植國產牧草則是其中一個可以解決這種困境的方法之一。優良的國產牧草以高營養價值作為重要的考量因素。其中,燕麥是牧草作物中營養價值較高的一種牧草,它具有較高粗蛋白質與非纖維碳水化合物,其需水量較少的特性,也可符合台灣中南部冬季較乾旱的環境,因此本論文以燕麥作為國產芻料的研究對象。
本論文共有三階段試驗。第一階段為利用近似分析評估不同品種國產燕麥為國內芻料來源之適用性,試驗選用八個燕麥品系(NTU sel No.1、Swan、26、30、33、39、43及44),於台灣北中南三個地區(台北、彰化及屏東)進行種植試驗,於進入糊熟期時收集各地區各品種之全株樣品進行營養成分分析,並配合體外消化試驗評估各地區適合栽種利用之燕麥品系。先透過產量資料與成分近似分析結果,再依據較低中洗纖維(neutral detergent fiber, NDF)及較高粗蛋白質(crude protein, CP)含量以選出各地區合適使用的兩個品種。結果顯示,北部之燕麥樣品具有較高之NDF含量但是CP較低。北中南地區之NDF%範圍分別為60-66%、57-62%及50-56%。在CP%部分,北中南地區分別為8-10%、9-11%及8-12%。依照設定需求,在北部地區選擇品系NTU sel No.1 (NDF = 60.74 %, CP = 10.99%)及43 (NDF = 64.17%, CP = 10.98%)、中部地區選擇品系43 (NDF = 59.18%, CP = 10.15 %)及44 (NDF = 59.87%, CP = 11.13%)、南部地區選擇品系33 (NDF = 52.01 %, CP = 12.20%)及43 (NDF = 50.51%, CP = 10.22%)。第二階段以所選擇的燕麥品系進行48小時體外消化率與產氣發酵試驗,消化率結果顯示,在北部地區,NTU sel No.1的消化率顯著高於43 (72.85% vs. 69.09 %)。但是中部地區的品系43與44 (65.18 % vs. 64.42 %)及南部地區的33與43 (69.93 % vs. 69.83 %)則在消化率上無顯著差異。由本試驗資料可了解,NTU sel No.1在北部地區可能較適合進行後續栽培利用,而中部地區則是品系43或44均適合,屏東地區則可考慮栽植33及43兩個品系供後續利用。 了解燕麥的營養組成分與體外消化試驗結果後,最後,透過第三部分替代性試驗,評估國產燕麥是否具有取代進口燕麥的價值。處理組分別為北部地區品系NTU sel No.1與43,中部地區43與44,南部地區33與43,該6個品系皆取代商用完全混合日糧(total mixed ration, TMR)中之進口甜燕麥的0、30、65與100%,其中。結果顯示,北部、中部與南部地區的國產燕麥,任一取代比例均不會對消化率、揮發性脂肪酸等造成負面影響,甚至消化率顯著高於控制組。 國產燕麥是個具有高營養價值的芻料來源,而經過體外消化試驗與取代率試驗,可以得知TMR中使用國產燕麥對消化率並無負面影響。相較於進口燕麥價格,國產燕麥較低廉,因此可使酪農生產成本下降。綜合上述試驗結果,以燕麥作為國產芻料對象是個具有潛力的發展方向。 | zh_TW |
| dc.description.abstract | There was a shortage of forage source in winter of Taiwan. In order to compensate for the high price imported hay, many domestic forage crops with high feeding value had been investigated. Among them, oats had the highest levels of crude protein (CP) and water-soluble carbohydrate (WSC). The less water demand of oat was an advantageous to be cultivated in fallow land in Central and South Taiwan during winter. Therefore, we adopted domestic oats as the target forage in this study.
The first stage experiment attempted to find out suitable cultivars for cultivating in three areas of Taiwan by examing the nutrient composition and the in vitro digestion performance. Eight cultivars of oats (NTU sel No.1, Swan, 26, 30, 33, 39, 43 and 44) were cultivated in north (Taipei), center (Changhua) and south (Pingtung) areas. According to yield and nutrient composition results, two suitable cultivars were selected from each area for further study. In Taipei, NTU sel No.1 had the highest CP (>11%) and non-fiber carbohydrate (NFC, 16.1%) among all strains. Similarly, 43 had high CP (10.9%) and the lowest acid detergent fiber (ADF, 36.6%). In Changhua, both 43 and 44 cultivars showed lower ash (9.9% and 8.6%, respectively) and higher NFC (18.3% and 18.1%, respectively) than other strains. In Pingtung, all strains had high levels of NFC than other area samples. When NFC exceeds 20%, the crop would be regarded as an excellent species in the midst of forages. The result in Pintung indicated that strain 33 and 43 had the lowest ADF (26.7% and 26.2%, respectively). The strain 33 also had the highest CP content (12.2%). According to the proximate analysis results, the cultivars km and 43, 43 and 44, 33 and 43 were chosen for cultivation in Taipei, Changhua and Pingtung, respectively. The in vitro digestion test was used to investigate the fermentation ability of selected oats. The test result indicated that oats from center area showed poor fermentation performance, including lower in vitro dry matter digestibility (IVDMD), gas production rate and volatile fatty acid (VFA) concentration. However, the oats harvested from south area showed the best fermentable performance than others. In the second experiment, the imported oats in total mixed ration (TMR) was replaced by domestic oats under different replacing ratio (0%, 30%, 65% and 100%) for in vitro fermentation test. The result indicated that no negative effect on IVDMD or VFA production was shown after domestic oats replacing treatment. It represented that domestic oats had high potential to replace imported oats. In conclusion, according to the feeding value evaluation result and domestic cost advantage, domestic oats could be an excellent alternative crop for ruminant winter feeding in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:28:12Z (GMT). No. of bitstreams: 1 ntu-107-R04626022-1.pdf: 1729828 bytes, checksum: 62d24c906b85d486c6623f7f631e1d59 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目錄 VI 圖次 X 表次 XI 緒言 1 壹、文獻探討 2 一、國產芻料與燕麥在在國內反芻動物飼養之利用 2 (一) 背景介紹 2 1. 泌乳牛飼糧來源 2 2. 台灣芻料現況 2 (二) 選擇具高餵飼價值之國產芻料 4 1. 挑選芻料的標準 4 2. 種植國產芻料的原因與效益 5 3. 挑選高餵飼價值之作物作為國產芻料 7 (三) 燕麥 (Oat, Avena sativa L.) 10 1. 生長特性與分類 10 2. 燕麥品種改良 11 二、以體外試驗評估飼糧於反芻動物之應用性 11 (一) 反芻動物飼糧之評估方式 12 (二) 體外(in vitro)發酵模式 13 1. 批式發酵 (batch culture) 13 2. 連續式發酵 (continuous culture) 13 (三) 影響體外試驗評估的因素 14 1. 動物來源 14 2. 不同飼糧對發酵結果的影響 15 3. 採集瘤胃液的時間 17 4. 取樣部分 17 5. 緩衝液的成分對發酵的影響 18 (四) 透過產氣動力學分析芻料消化情形 18 三、評估飼糧之瘤胃能氮平衡 20 (一) 飼糧中的碳水化合物與蛋白質 20 (二) The Cornell Net Carbohydrate and Protein System (CNCPS) 20 1. 蛋白質 21 21 (三) 能氮瘤胃釋放同步化 (能氮平衡) 22 貳、材料與方法 24 一、試驗材料 24 (一) 燕麥 24 (二) 提供瘤胃液之牛隻來源 24 26 二、試驗安排 27 (一) 近似分析評估 27 (二) 燕麥體外消化試驗 27 (三) 替代性試驗 28 (四) 體外消化試驗 (In vitro digestibility test) 31 三、試驗後樣品處理 32 四、分析項目 36 (一) 乾物質 (Dry matter, DM) (吳, 2001) 36 (二) 灰分 (Ash) (吳, 2001) 36 (三) 粗脂肪 (Ether extract, EE) (Van Soest et al., 1991) 37 (四) 中洗纖維 (Neutral detergent fiber, NDF) (Van Soest et al., 1991) 38 (五) 酸洗纖維 (Acid detergent fiber, ADF) (Van Soest et al., 1991) 39 (六) 粗蛋白 (Crude protein, CP) 40 (七) 揮發性脂肪酸 (Volatile fatty acid, VFA) 42 (八) 氨態氮 (Ammonia N) (Chaney and Marbach, 1962) 43 (九) 微生物菌體蛋白 (Microbial crude protein, MCP) 44 四、統計分析 45 參、結果 46 一、各地區不同品系燕麥之產量與近似分析比較 46 (一) 各地區平均產量 (資料由台大農藝系黃永芬老師提供) 46 (二) 全植株之近似分析 47 二、挑選後燕麥品系之體外消化試驗結果 51 (一) 全植株(whole plant)之產氣動力學 51 (二) EIR之產氣動力學 55 (三) 消化率相關指標 57 三、國產燕麥取代進口燕麥之替代評估 60 (一) 北部地區 60 (二) 中部地區 64 (三) 南部地區 68 肆、討論 72 一、篩選各地適合的燕麥品系 72 二、各地區燕麥之體外消化測試發酵狀況 74 (一) 地區、品系及採收時間對燕麥產量、營養成分的影響 74 (二) 探討各地區內燕麥品系之體外發酵差異 76 (三) 以採收日期與營養成分探討地區內不同燕麥品系之發酵差異 77 三、各地區國產燕麥取代進口燕麥之可行性評估 78 伍、結論 79 參考文獻 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 體外消化率 | zh_TW |
| dc.subject | 芻料 | zh_TW |
| dc.subject | 燕麥 | zh_TW |
| dc.subject | Oat | en |
| dc.subject | Forage | en |
| dc.subject | In vitro digestibility | en |
| dc.title | 國產燕麥作為反芻動物芻料來源之適用性評估 | zh_TW |
| dc.title | Evaluation of Domestic Oats as Forage Source in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐濟泰(Jih-Tay Hsu),黃永芬(Yung-Fen Huang) | |
| dc.subject.keyword | 燕麥,芻料,體外消化率, | zh_TW |
| dc.subject.keyword | Oat,Forage,In vitro digestibility, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201803880 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
