Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72164
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力
dc.contributor.authorTi Lanen
dc.contributor.author藍迪zh_TW
dc.date.accessioned2021-06-17T06:26:37Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation[1: Zhu et al. 2017]H. Zhu, K. V. Yuen, L. Mihaylova and H. Leung, “Overview of Environment Perception for Intelligent Vehicles,” in IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584-2601, Oct. 2017.
[2: Jo et al. 2014] K. Jo, J. Kim, D. Kim, C. Jang and M. Sunwoo, “Development of Autonomous Car—Part I: Distributed System Architecture and Development Process,” in IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7131-7140, Dec. 2014.
[3: Paden et al. 2016] B. Paden, M. Čáp, S. Z. Yong, D. Yershov and E. Frazzoli, “A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles,” in IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33-55, Mar. 2016.
[4: Karlsson & Gustafsson 2017] R. Karlsson and F. Gustafsson, “The Future of Automotive Localization Algorithms: Available, reliable, and scalable localization: Anywhere and anytime,” in IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 60-69, Mar. 2017.
[5: Kuutti et al. 2018] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough and A. Mouzakitis, “A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications,” in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 829-846, Apr. 2018.
[6: Skog & Handel 2009] I. Skog and P. Handel, “In-Car Positioning and Navigation Technologies—A Survey,” in IEEE Transactions on Intelligent Transportation Systems, vol. 10, no.1, pp. 4-21, Mar. 2009.
[7: Mogelmose et al. 2012] A. Mogelmose, M. M. Trivedi and T. B. Moeslund, “Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey,” in IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1484-1497, Dec. 2012.
[8: Hata & Wolf 2016] A. Y. Hata and D. F. Wolf, “Feature Detection for Vehicle Localization in Urban Environments Using a Multilayer LIDAR,” in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 420-429, Feb. 2016.
[9: Sefati et al. 2017] M. Sefati, M. Daum, B. Sondermann, K. D. Kreisköther and A. Kampker, “Improving Vehicle Localization Using Semantic and Pole-like Landmarks,” in Proceedings of IEEE Intelligent Vehicles Symposium, Los Angeles, CA, pp. 13-19, Jun. 11-14, 2017.
[10: Yokoyama et al. 2013] H. Yokoyama, H. Date, S. Kanai, and H. Takeda, “Detection and classification of pole-like objects from mobile laser scanning data of urban environments,” in International Journal of CAD/CAM, vol. 13, no. 2, pp. 31-40, 2013.
[11: Mian et al. 2006] A. S. Mian, M. Bennamoun and R. Owens, “Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1584-1601, Oct. 2006.
[12: Yu et al. 2015] Y. Yu, J. Li, H. Guan, C. Wang and J. Yu, “Semiautomated Extraction of Street Light Poles from Mobile LiDAR Point-Clouds,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 3, pp. 1374-1386, Mar. 2015.
[13: Wu et al. 2017] F. Wu, C. Wen, Y. Guo, J. Wang, Y. Yu, C. Wang and J. Li, “Rapid Localization and Extraction of Street Light Poles in Mobile LiDAR Point Clouds: A Supervoxel-Based Approach,” in IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 2, pp. 292-305, Feb. 2017.
[14: Guo et al. 2015] Y. Guo, M. Bennamoun, F. Sohel, M. Lu and J. Wan, “An Integrated Framework for3-D Modeling, Object Detection, and Pose Estimation from Point-Clouds,” in IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 3, pp. 683-693, Mar. 2015.
[15: Bresson et al. 2017] G. Bresson, Z. Alsayed, L. Yu and S. Glaser, “Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving,” in IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3, pp. 194-220, Sep. 2017.
[16: Li et al. 2016] L. Li, M. Yang, L. Guo, C. Wang and B. Wang, “Hierarchical Neighborhood Based Precise Localization for Intelligent Vehicles in Urban Environments,” in IEEE Transactions on Intelligent Vehicles, vol. 1, no. 3, pp. 220-229, Sep. 2016.
[17: Choi & Maurer 2016] J. Choi and M. Maurer, “Local Volumetric Hybrid-Map-Based Simultaneous Localization and Mapping with Moving Object Tracking,” in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 9, pp. 2440-2455, Sep. 2016.
[18: Hata & Wolf 2016] A. Y. Hata and D. F. Wolf, “Feature Detection for Vehicle Localization in Urban Environments Using a Multilayer LIDAR,” in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 420-429, Feb. 2016.
[19: Liu et al. 2011] M. Liu, X. Lei, S. Zhang and B. Mu, “Natural Landmark Extraction in 2D Laser Data based on Local Curvature Scale for Mobile Robot Navigation,” in Proceedings of IEEE International Conference on Robotics and Automation, Shanghai, China, pp.5173-5178, Dec. 14-18, 2011.
[20: Gao et al. 2015] X. Gao, J. Wang and W. Chen, “Land-mark placement for reliable localization of automatic guided vehicle in warehouse environment,” in Proceedings of IEEE International Conference on Robotics and Biomimetics, Zhuhai, China, pp. 1900-1905, Dec. 6-9, 2015.
[21: Beinhofer et al. 2013] M. Beinhofer, J. Müller and W. Burgard, “Effective landmark placement for accurate and reliable mobile robot navigation,” in Robotics and Autonomous Systems, vol. 61, pp. 1060-1069, Oct. 2013.
[22: Ronzoni et al. 2011] D. Ronzoni, R. Olmi, C. Secchi and C. Fantuzzi, “AGV Global Localization Using Indistinguishable Artificial Landmarks,” in Proceedings of IEEE International Conference on Robotics an Automation, Shanghai, China, pp.5173-5178, May 9-13, 2011.
[23: Zindler et al. 2014] K. Zindler, N. Geiß, K. Doll and S. Heinlein, “Real-time ego-motion estimation using Lidar and a vehicle model based Extended Kalman Filter,” in Proceedings of IEEE International Conference on Intelligent Transportation Systems, Qingdao, China, pp. 431-438, Oct. 8-11, 2014.
[24: Wu & Yang 2007] S. X. Wu and M. Yang, “Landmark Pair based Localization for Intelligent Vehicles using Laser Radar,” in proceedings of IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, Jun. 13-15, pp. 209-214, 2007.
[25: Burkard & Çela 1999] R. E. Burkard and E. Çela, “Linear Assignment Problems and Extensions,” in Handbook of Combinatorial Optimization, Springer, Boston, MA, pp.75-129, 1999.
[26: Fischler & Bolles 1981] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”, in Communications of the ACM, vol. 24, pp. 381-395, Jun. 1981.
[27: Shlens 2014] J. Shlens, “A Tutorial on Principal Component Analysis,” in arXiv:1404.1100 [cs.LG], Apr. 2014.
[28: Kennedy & Eberhart 1995] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of IEEE International Conference on Neural Networks, Perth, WA, vol.4, pp. 1942-1948, Nov. 27-Dec. 1, 1995.
[29: Pedersen & Chipperfield 2010] M. E. H. Pedersen, A.J. Chipperfield, “Simplifying Particle Swarm Optimization,” in Applied Soft Computing, vol. 10, no. 2, pp. 618-628, Mar. 2010.
[30: Clerc & Kennedy 2002] M. Clerc and J. Kennedy, “The Particle Swarm - Explosion, Stability, and Convergence in a Multidimensional Complex Space,” in IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, Feb. 2002.
[31: Kuhn 1955] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,” in Naval Research Logistics Quarterly, vol.2, pp.83–97, Mar. 1955.
[32: Aster et al. 2013] R. C. Aster, B. Borchers and C. H. Thurber, “Parameter Estimation and Inverse Problem,” 2nd edition, Academic Press, Boston, Jul. 2013.
[33: Simon 2006] D. Simon, “Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches,” Wiley & Sons, New Jersey, Jan. 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72164-
dc.description.abstract為了達成車輛全自主駕駛,車輛定位在自主駕駛車上是最基本的功能。雖然全球定位系統被廣泛的應用在車輛定位上,其定位仍然會受到一定量的偏差。為了減少定位偏差,行駛環境中的地標物可以用來輔助車輛定位。若此地標物的全球座標位置或是地標地圖在定位前是已知的,車輛的姿態與位置可以藉由計算偵測的地標與地圖上地標之間的轉換關係得知。在地標偵測演算法中,由光達所產生的三維點雲中能夠擷取出反射強度值以及幾何特徵。根據已知的地標物模型,地標物在車輛座標下的姿態與位置可由模型導向的方式估測。在初始估測完後並利用最佳化的方式降低模型配對的誤差。在車輛定位演算法中,偵測的地標物與地圖上的地標物會根據車輛預測的位置進行資料配對關係。當兩個以上的地標物被偵測且配對時,車輛在全球座標的位置可以透過地標物來估測。為了使估測的軌跡能夠更加平滑,卡爾曼濾波器中的時間與量測更新將使用於車輛定位演算法中。由實驗結果得知,利用所提出的演算法平均估測的偏差根據真實參考軌跡為0.19公尺。相較於只使用全球定位系統來定位的平均偏差1.81公尺還來的小。zh_TW
dc.description.abstractIn order to achieve full self-driving capability, localization is one of the basic function of future autonomous vehicle. Although GPS is widely used for localization, it suffers from bias generally. To reduce the bias, landmarks around the ego-vehicle can be used to enhance the localization performance. If the global position of landmarks (or the landmark map) are known, the vehicle pose can be estimated by finding the transformation between the detected landmarks and the landmarks in global coordinate. For landmark detection, intensity value and geometric feature are extracted from the 3-D point cloud captured by LiDAR. Based on the known model of landmark, a model-driven approach is used to estimate the pose of landmark in local coordinate. To reduce the model matching error, an optimization is performed after initial landmark pose estimation.For vehicle localization, the data association between the detected landmarks and the map are estimated based on the prediction vehicle pose. If two or more landmarks are available, vehicle pose can be estimated from the detected landmarks. In addition, to increase the smoothness of localization trajectory, Kalman filtering is used from both time update and measurement update. The experimental results show that the average localization bias of the proposed method with available ground truth could be reduced to 0.19m, which is lower than the bias of using GPS only (1.81m).en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:26:37Z (GMT). No. of bitstreams: 1
ntu-107-R05921003-1.pdf: 10304242 bytes, checksum: 1fa3ba98d5c9ddba7c79e0a2732faf57 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 v
ABSTRACT vii
CONTENTS x
LIST OF FIGURES xii
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Formulation 2
1.3 Contribution 5
1.4 Organization of the Thesis 6
Chapter 2 Background and Literature Survey 7
2.1 Autonomous Driving System 7
2.2 LiDAR-based Perception 8
2.3 Vehicle Localization 10
Chapter 3 Related Algorithms 13
3.1 Random Sample Consensus (RANSAC) 13
3.2 Principal Component Analysis (PCA) 14
3.3 Particle Swarm Optimization (PSO) 17
3.4 Hungarian Algorithm 19
3.5 Iteratively Reweighted Least Square (IRLS) 22
3.6 Kalman Filter 24
Chapter 4 Landmark Detection 26
4.1 System Architecture 28
4.2 Point Cloud Preprocessing & Segmentation 30
4.2.1 Segmentation with Reflective Intensity 30
4.2.2 Region of Interest (ROI) Selection 31
4.3 Geometric Feature Extraction 34
4.3.1 Local Ground Surface Estimation 35
4.3.2 Apex Point Initial Estimation 37
4.4 Optimization & Fitness Evaluation 40
4.4.1 Model Matching Cost 41
4.4.2 Location Optimization Problem 42
4.4.3 Fitness Evaluation 45
Chapter 5 Vehicle Localization with Landmarks 47
5.1 System Architecture 47
5.2 Vehicle Localization Problem 49
5.3 Sub-map Selection & Data Association 54
5.4 Vehicle Pose Estimation 61
5.4.1 Least Square 61
5.4.2 Iteratively Reweighted Least Square 62
5.5 Prediction and Measurement Update 67
Chapter 6 Experimental Results and Analysis 69
6.1 Experiment Setup 69
6.1.1 Vehicle & Sensors 70
6.1.2 Landmark Configuration 74
6.1.3 Map Building Process 78
6.1.4 Covariance Analysis of GPS 79
6.2 Experimental Scenarios 81
6.3 Test of false positives 85
6.4 Static Scenarios 87
6.5 Dynamic Scenarios 96
6.5.1 Scene “B51” 96
6.5.2 Scene “B22” 110
6.5.3 Scene “B58” 122
6.6 Summary 134
Chapter 7 Conclusions and Future Works 140
7.1 Conclusions 140
7.2 Future Works 141
References 143
dc.language.isoen
dc.subject自主駕駛系統zh_TW
dc.subject光達三維點雲zh_TW
dc.subject全球定位系統zh_TW
dc.subject地標物感測zh_TW
dc.subject車輛定位zh_TW
dc.subjectlandmark detectionen
dc.subjectLiDAR 3-D point clouden
dc.subjectglobal positioning system (GPS)en
dc.subjectAutonomous driving systemen
dc.subjectvehicle localizationen
dc.title利用三維點雲強度資訊與幾何模型之地標感測與車輛定位zh_TW
dc.titleUsing Intensity and Geometric Models of 3-D Point Cloud for Landmark Detection and Vehicle Localizationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃正民,李後燦,簡忠漢
dc.subject.keyword自主駕駛系統,車輛定位,地標物感測,全球定位系統,光達三維點雲,zh_TW
dc.subject.keywordAutonomous driving system,vehicle localization,landmark detection,global positioning system (GPS),LiDAR 3-D point cloud,en
dc.relation.page146
dc.identifier.doi10.6342/NTU201803809
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
10.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved