Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72157
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪士灝
dc.contributor.authorYuan-Di Lien
dc.contributor.author李沅迪zh_TW
dc.date.accessioned2021-06-17T06:26:16Z-
dc.date.available2022-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation[1] Nvidia hgx-1 hyperscale gpu accelerator. https://www.nvidia.com/en-us/ data-center/hgx/. Accessed: 2018-07-27.
[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: a system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.
[3] T.Bradley.Gpuperformanceanalysisandoptimisation.NVIDIACorporation,2012.
[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.
[5] L. Cheng-Yueh. Sofa. https://github.com/cyliustack/sofa.git, 2018.
[6] Google. Tfprof. https://github.com/tensorflow/tensorflow/tree/ master/tensorflow/contrib/tfprof, 2018.
[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing sys- tems, pages 1097–1105, 2012.
[10] C. Leary and T. Wang. Xla: Tensorflow, compiled. TensorFlow Dev Summit, 2017.
[11] A.Paszke,S.Gross,S.Chintala,G.Chanan,E.Yang,Z.DeVito,Z.Lin,A.Desmai- son, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.
[12] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van- houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.
[14] C.Szegedy,V.Vanhoucke,S.Ioffe,J.Shlens,andZ.Wojna.Rethinkingtheinception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72157-
dc.description.abstract深度學習(deep learning)是機器學習的分支,可以利用深度學習執行影像辨識、語音分析、文字翻譯等。對於強調效能與效率的深度學習應用而言,開發者不應只重視類神經網路演算法的設計,也必須考慮在真實情況中做一次完整的推論時所包含的資料前處理管線(input pipeline)。在某些情況下,資料前處理會嚴重影響深度學習應用效能,因此為了達到最佳的效能,使用者需要分析工具去找出效能瓶頸。然而現存的深度學習分析工具,例NVprof和TFprof,並不能提供足以深度剖析Tensorflow資料前處理管線效能所需的細節資料,因此我們發展一套分析工具(SOFA)來幫助解決這個問題。
為了驗證這套分析工具的效果,在這份研究論文中,我們提出四種可實作資料前處理管線的方法,透過SOFA去探討這四種不同前處理方法對於效能的影響。在五種不同的類神經網路模型所建構的實驗情境中,使用者可以清楚的從SOFA的分析結果中瞭解效能瓶頸的所在以及原因。從實驗結果也可發現,當資料前處理管線經過優化後,有可能大幅提升深度學習應用的效能,例如Alexnet獲得了19.8倍的提升,Googlenet則提升了12.3倍。當效能瓶頸不在資料前處理管線,而是資料推論時,我們可以進一步使用Tensorflow所提供的加速線性代數(XLA)機制來加速,例如將VGG11從7.8倍於原始版本的效能提升到8.4倍。
zh_TW
dc.description.abstractDeep Learning is a subset of machine learning and deep learning applications include image detection and voice recognition. For deep learning applications, most developers should not only focus on the design and accuracy of neural network, but also take the input pipeline in an inference step in real world as consideration. Data preprocessing will be a serious performance issue in some cases. In purpose of getting a better performance, developers need a profiling tool to analyze deep learning applications. However, profiling tools, Nvprof and TFprof, nowadays could not acquire the entire details of TensorFlow data preprocessing. In this study, a deep learning profiling tool, SOFA(Swarms of Functions Analysis), is developed for solving the problem.
In the purpose of evaluation SOFA, there are four data preprocessing methods implemented by five neural network models and analyzed by SOFA separately in this study. SOFA allows the developers to discover the performance bottleneck and the root cause of it. After data preprocessing pipeline is optimized, great improvement of deep learning application performance is possible in these case studies. In the case of using Alexnet, a 19.8x speedup is achieved, and 12.3x in the case of using Googlenet. When CPU is no longer the performance bottleneck, an additional speedup is achievable with XLA, such as an increment in growth from 7.8x speedup in original version to 8.4x speedup in XLA version when using VGG11.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:26:16Z (GMT). No. of bitstreams: 1
ntu-107-R05922116-1.pdf: 3407670 bytes, checksum: f37829a045c1359a1d5724682ebea920 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝............................................. i
摘要............................................. ii Abstract........................................... iii
第一章 介紹....................................... 1
第二章 背景知識..................................... 3
2.1 深度學習背景知識............................. 3
2.1.1 深度學習與類神經網路...................... 3
2.1.2 深度學習框架:TensorFlow ................... 3
2.2 深度學習應用與真實資料......................... 4
2.2.1 深度學習應用與真實資料 .................... 4
2.2.2 TensorFlow資料準備 ....................... 4
2.3 深度學習應用分析工具 .......................... 5
2.3.1 SOFA(SwarmsofFunctionsAnalysis) . . . . . . . . . . . . . 5
第三章 研究方法..................................... 7
3.1 SOFA現況與新功能............................ 7
3.1.1 SOFA現況............................. 7
3.1.2 SOFA新功能............................ 8
3.2 深度學習應用資料前處理方法 ...................... 9
3.2.1 無管線化方法 ........................... 9
3.2.2 管線化方法 ............................ 11
3.2.3 平行映射方法 ........................... 12
3.2.4 映射與批次融合方法 ....................... 13
第四章 案例分析..................................... 14
4.1 實驗環境設置、類神經網路模型..................... 14
4.1.1 實驗環境設置 ........................... 14
4.1.2 類神經網路模型.......................... 14
4.2 案例分析A、B、C與D ......................... 15
4.2.1 影像生產者與預取操作...................... 15
4.2.2 案例分析 A:影像生產者(ImageProducer) . . . . . . . . . . 15
4.2.3 案例分析B:預取操作(PrefetchOP) ............. 16
4.2.4 案例分析C:平行映射(ParallelMap)............. 18
4.2.5 案例分析D:映射與批次融合(MaB)............. 19
4.3 加速線性代數(XLA) .......................... 23
4.3.1 加速線性代數與案例D(MaB)................. 23
4.4 多個加速器案例分析 ........................... 25
4.4.1 HGX-1介紹 ............................ 25
4.4.2 HGX-1案例分析結果....................... 26
第五章 結論與未來展望................................ 30
5.1 結論..................................... 30
5.2 未來展望.................................. 30
參考文獻.......................................... 31
dc.language.isozh-TW
dc.subject深度學習zh_TW
dc.subject資料前處理zh_TW
dc.subject效能分析工具zh_TW
dc.subjectProfiling toolen
dc.subjectDeep learningen
dc.subjectData preprocessingen
dc.title分析與優化 Tensorflow 深度學習系統輸入管線與 XLA 之結構zh_TW
dc.titleAnalysis and optimization of the input pipeline and the use of XLA for
Tensorflow deep learning systems
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐慰中,涂嘉恒
dc.subject.keyword效能分析工具,深度學習,資料前處理,zh_TW
dc.subject.keywordProfiling tool,Deep learning,Data preprocessing,en
dc.relation.page34
dc.identifier.doi10.6342/NTU201803836
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved