請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72148完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬 | |
| dc.contributor.author | Cheng-Wei Tang | en |
| dc.contributor.author | 唐承緯 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:25:47Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | 1.Torre, L. A., Siegel, R. L. & Jemal, A. Lung Cancer Statistics. Adv Exp Med Biol 893, 1-19 (2016).
2.Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J Clin 68, 7-30 (2018). 3.Lin, S., Chen, Y., Yang, L. & Zhou, J. Pain, fatigue, disturbed sleep and distress comprised a symptom cluster that related to quality of life and functional status of lung cancer surgery patients. J Clin Nurs 22, 1281-1290 (2013). 4.Iyer, S., Roughley, A., Rider, A. & Taylor-Stokes, G. The symptom burden of non-small cell lung cancer in the USA: a real-world cross-sectional study. Support Care Cancer 22, 181-187 (2014). 5.Maguire, R., Stoddart, K., Flowers, P., McPhelim, J. & Kearney, N. An Interpretative Phenomenological Analysis of the lived experience of multiple concurrent symptoms in patients with lung cancer: a contribution to the study of symptom clusters. Eur J Oncol Nurs 18, 310-315 (2014). 6.de Groot, P. & Munden, R. F. Lung cancer epidemiology, risk factors, and prevention. Radiol Clin North Am 50, 863-876 (2012). 7.Pallis, A. G. & Syrigos, K. N. Lung cancer in never smokers: disease characteristics and risk factors. Crit Rev Oncol Hematol 88, 494-503 (2013). 8.Malhotra, J., Malvezzi, M., Negri, E., La Vecchia, C. & Boffetta, P. Risk factors for lung cancer worldwide. Eur Respir J 48, 889-902 (2016). 9.Rosato, A. et al. Survivin expression impacts prognostically on NSCLC but not SCLC. Lung cancer 79, 180-186 (2013). 10.Nawaz, K. & Webster, R. M. The non-small-cell lung cancer drug market. Nat Rev Drug Discov 15, 229-230 (2016). 11.Hensing, T., Chawla, A., Batra, R. & Salgia, R. A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization. Adv Exp Med Biol 799, 85-117 (2014). 12.Wakelee, H., Kelly, K. & Edelman, M. J. 50 Years of progress in the systemic therapy of non-small cell lung cancer. Am Soc Clin Oncol Educ Book, 177-189 (2014). 13.da Cunha Santos, G., Shepherd, F. A. & Tsao, M. S. EGFR mutations and lung cancer. Annu Rev Pathol 6, 49-69 (2011). 14.Lemjabbar-Alaoui, H., Hassan, O. U., Yang, Y. W. & Buchanan, P. Lung cancer: Biology and treatment options. Biochim Biophys Acta 1856, 189-210 (2015). 15.Herbst, R. S., Heymach, J. V. & Lippman, S. M. Lung cancer. N Engl J Med 359, 1367-1380 (2008). 16.Li, J. et al. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR. Oncotarget 6, 6749-6761 (2015). 17.Huang, L. & Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 5, 390-401 (2015). 18.Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497-1500 (2004). 19.Stewart, E. L., Tan, S. Z., Liu, G. & Tsao, M. S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations-a review. Transl Lung Cancer Res 4, 67-81 (2015). 20.Weber, J. & Senior, A. E. Catalytic mechanism of F1-ATPase. Biochim Biophys Acta 1319, 19-58 (1997). 21.von Ballmoos, C., Wiedenmann, A. & Dimroth, P. Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78, 649-672 (2009). 22.Pedersen, P. L. & Amzel, L. M. ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature's most unique machines. J Biol Chem 268, 9937-9940 (1993). 23.Pedersen, P. L., Ko, Y. H. & Hong, S. ATP synthases in the year 2000: evolving views about the structures of these remarkable enzyme complexes. J Bioenerg Biomembr 32, 325-332 (2000). 24.Cross, R. L. Enzyme structure. Our primary source of ATP. Nature 370, 594-595 (1994). 25.Rastogi, V. K. & Girvin, M. E. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402, 263-268 (1999). 26.Huang, T. C. et al. Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res 7, 1433-1444 (2008). 27.Chang, H. Y. et al. Ectopic ATP synthase blockade suppresses lung adenocarcinoma growth by activating the unfolded protein response. Cancer Res 72, 4696-4706 (2012). 28.Linnett, P. E., Mitchell, A. D., Osselton, M. D., Mulheirn, L. J. & Beechey, R. B. Citreoviridin, a specific inhibitor of the mitochondiral adenosine triphosphatase. Biochem J 170, 503-510 (1978). 29.Gause, E. M., Buck, M. A. & Douglas, M. G. Binding of citreoviridin to the beta subunit of the yeast F1-ATPase. J Biol Chem 256, 557-559 (1981). 30.Satre, M., Bof, M. & Vignais, P. V. Interaction of Escherichia coli adenosine triphosphatase with aurovertin and citreoviridin: inhibition and fluorescence studies. J Bacteriol 142, 768-776 (1980). 31.Wu, Y. H. et al. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin. PLoS One 8, e70642 (2013). 32.Sun, S. Chronic exposure to cereal mycotoxin likely citreoviridin may be a trigger for Keshan disease mainly through oxidative stress mechanism. Med Hypotheses 74, 841-842 (2010). 33.Chang, H. Y., Huang, T. C., Chen, N. N., Huang, H. C. & Juan, H. F. Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis 5, e1540 (2014). 34.Hu, C. W. et al. Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin. Mol Cell Proteomics 14, 3284-3298 (2015). 35.Bai, Y. et al. The role of oxidative stress in citreoviridin-induced DNA damage in human liver-derived HepG2 cells. Environ Toxicol 30, 530-537 (2015). 36.Liu, Y. N. et al. Citreoviridin induces ROS-dependent autophagic cell death in human liver HepG2 cells. Toxicon 95, 30-37 (2015). 37.Wang, Y. et al. Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells. Toxins 7, 3030-3044 (2015). 38.Ma, L., Bajic, V. B. & Zhang, Z. On the classification of long non-coding RNAs. RNA Biol 10, 925-933 (2013). 39.Devaux, Y. et al. Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol 12, 415-425 (2015). 40.Perkel, J. M. Visiting 'noncodarnia'. Biotechniques 54, 301, 303-304 (2013). 41.Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559-1563 (2005). 42.Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20, 300-307 (2013). 43.Qi, P. & Du, X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 26, 155-165 (2013). 44.Kutter, C. et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet 8, e1002841 (2012). 45.Washietl, S., Kellis, M. & Garber, M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24, 616-628 (2014). 46.Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635-640 (2014). 47.Zheng, B., Jeong, S., Zhu, Y., Chen, L. & Xia, Q. miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA). Oncotarget 8, 100819-100830 (2017). 48.Chakraborty, S., Deb, A., Maji, R. K., Saha, S. & Ghosh, Z. LncRBase: an enriched resource for lncRNA information. PLoS One 9, e108010 (2014). 49.Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nat Rev Genet 10, 155-159 (2009). 50.Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17, 47-62 (2016). 51.Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol Cell 43, 904-914 (2011). 52.Lorenzen, J. M. & Thum, T. Long noncoding RNAs in kidney and cardiovascular diseases. Nat Rev Nephrol 12, 360-373 (2016). 53.Schmitt, A. M. & Chang, H. Y. Long Noncoding RNAs in Cancer Pathways. Cancer cell 29, 452-463 (2016). 54.Schneider, C., King, R. M. & Philipson, L. Genes specifically expressed at growth arrest of mammalian cells. Cell 54, 787-793 (1988). 55.Smith, C. M. & Steitz, J. A. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol 18, 6897-6909 (1998). 56.Williams, G. T., Mourtada-Maarabouni, M. & Farzaneh, F. A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans 39, 482-486 (2011). 57.Pickard, M. R. & Williams, G. T. Molecular and Cellular Mechanisms of Action of Tumour Suppressor GAS5 LncRNA. Genes 6, 484-499 (2015). 58.Tanaka, R. et al. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of human B-cell lymphoma. Genes Cell 5, 277-287 (2000). 59.Hirose, T. & Steitz, J. A. Position within the host intron is critical for efficient processing of box C/D snoRNAs in mammalian cells. Proc Natl Acad Sci U S A 98, 12914-12919 (2001). 60.Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3, ra8 (2010). 61.Lucafo, M. et al. Long noncoding RNA GAS5: a novel marker involved in glucocorticoid response. Curr Mol Med 15, 94-99 (2015). 62.Pickard, M. R. & Williams, G. T. The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cells. Oncotarget 7, 10104-10116 (2016). 63.Shi, X. et al. A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog 54 Suppl 1, E1-E12 (2015). 64.Dong, S. et al. The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J Hematol Oncol 8, 43 (2015). 65.Champoux, J. J. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70, 369-413 (2001). 66.Bush, N. G., Evans-Roberts, K. & Maxwell, A. DNA Topoisomerases. EcoSal Plus 6 (2015). 67.Timsit, Y. Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res 39, 8665-8676 (2011). 68.Seol, Y. & Neuman, K. C. The Dynamic Interplay Between DNA Topoisomerases and DNA Topology. Biophys Rev 8, 221-231 (2016). 69.McClendon, A. K. & Osheroff, N. DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623, 83-97 (2007). 70.Deweese, J. E. & Osheroff, N. The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Res 37, 738-748 (2009). 71.Wartlick, F., Bopp, A., Henninger, C. & Fritz, G. DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac. Biochim Biophys Acta 1833, 3093-3103 (2013). 72.de Campos-Nebel, M., Larripa, I. & Gonzalez-Cid, M. Topoisomerase II-mediated DNA damage is differently repaired during the cell cycle by non-homologous end joining and homologous recombination. PLoS One 5, e12541 (2010). 73.Wells, N. J., Addison, C. M., Fry, A. M., Ganapathi, R. & Hickson, I. D. Serine 1524 is a major site of phosphorylation on human topoisomerase II alpha protein in vivo and is a substrate for casein kinase II in vitro. J Biol Chem 269, 29746-29751 (1994). 74.Chikamori, K. et al. Phosphorylation of serine 1106 in the catalytic domain of topoisomerase II alpha regulates enzymatic activity and drug sensitivity. The J Biol Chem 278, 12696-12702 (2003). 75.Grozav, A. G. et al. Casein kinase I delta/epsilon phosphorylates topoisomerase IIalpha at serine-1106 and modulates DNA cleavage activity. Nucleic Acids Res 37, 382-392 (2009). 76.Xiang, Jun. Chen. Temporal Phosphoproteome Dynamics Reveals the Role of ATP Synthase Inhibitor Citreoviridin in Gefitinib-resistant Lung Cancer Cells. Master Thesis, National Taiwan University, Taipei, Taiwan (2016). 77.Liu, H. et al. Identification and functional analysis of a potential key lncRNA involved in fat loss of cancer cachexia. J Cell Biochem 119, 1679-1688 (2018). 78.Askarian-Amiri, M. E. et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 17, 878-891 (2011). 79.Li, T. et al. Amplification of Long Noncoding RNA ZFAS1 Promotes Metastasis in Hepatocellular Carcinoma. Cancer Res 75, 3181-3191 (2015). 80.Thorenoor, N. et al. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget 7, 622-637 (2016). 81.Nie, F. et al. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget 8, 38227-38238 (2017). 82.Zhang, X. et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70, 2350-2358 (2010). 83.Ying, L. et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol BioSyst 9, 407-411 (2013). 84.Zhang, C. Y. et al. Overexpression of long non-coding RNA MEG3 suppresses breast cancer cell proliferation, invasion, and angiogenesis through AKT pathway. Tumour Biol 39, 1010428317701311 (2017). 85.Sun, M. et al. Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer 14, 319 (2014). 86.Luo, G. et al. LncRNA GAS5 Inhibits Cellular Proliferation by Targeting P27(Kip1). Mol Cancer Res 15, 789-799 (2017). 87.Krell, J. et al. Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA damage in colorectal cancer. PLoS One 9, e98561 (2014). 88.Mazar, J., Rosado, A., Shelley, J., Marchica, J. & Westmoreland, T. J. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget 8, 6589-6607 (2017). 89.Bi, X. et al. Deletion of Irf5 protects hematopoietic stem cells from DNA damage-induced apoptosis and suppresses gamma-irradiation-induced thymic lymphomagenesis. Oncogene 33, 3288-3297 (2014). 90.Bates, G. J. et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24, 543-553 (2005). 91.Nicol, S. M. et al. The RNA helicase p68 (DDX5) is selectively required for the induction of p53-dependent p21 expression and cell-cycle arrest after DNA damage. Oncogene 32, 3461-3469 (2013). 92.Yeo, C. Q. X. et al. p53 Maintains Genomic Stability by Preventing Interference between Transcription and Replication. Cell Rep 15, 132-146 (2016). 93.Cowell, I. G. et al. Human topoisomerase IIalpha and IIbeta interact with the C-terminal region of p53. Exp Cell Res 255, 86-94 (2000). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72148 | - |
| dc.description.abstract | 肺癌是世界上最普遍和致命的癌症之一。肺癌主要有兩種形式:非小型細胞肺癌(NSCLC)和小型細胞肺癌(SCLC)。近年來,一些小分子像是艾瑞莎(gefitinib),能夠以酪胺酸激酶作為標的,被用來作為非小細胞癌患者的第一線治療藥物。然而,一些病人卻被發現再標靶治療後產生腫瘤復發最後演變成漸進的結果,因此,一些有效的治療方法是需要被發現的。在我們的研究中發現,異位表達的ATP合成酶會表現在具有艾瑞莎抗性的肺癌細胞株的細胞膜上,異位表達的ATP合成酶抑制劑:黃綠青黴素(citreoviridin),能夠抑制肺癌細胞的細胞增生和細胞群落的形成。為了進一步的闡明黃綠青黴素的作用機制,我們做了微陣列分析。結果顯示不僅mRNA還有長鏈非編碼RNA(lncRNA)都參與了黃綠青黴素所造成的細胞死亡。其中一個長鏈非編碼RNA: 生長抑制特異性轉錄本5 (growth arrest-specific transcript, GAS5,在黃綠青黴素作用後有明顯的基因上調。為了探討GAS5上游的調控者,我們利用了染色質免疫沉澱法(ChIP)發現轉錄因子E2F1能夠結合在GAS5的啟動子上。微陣列分析和即時聚合酶鏈式反應的結果也顯示出E2F1的表達量在黃綠青黴素作用後和GAS5具有負相關的關係。這些證據顯示E2F1可能是GAS5的潛在抑制者。此外,結合微陣列分析、基因集富集分析(GSEA)和即時聚合酶鏈式反應,也證明了抑癌基因p53途徑也被活化。為了進一步了解GAS5-p53的調控網路,我們使用了核醣核酸蛋白質拉下測定試驗(RNA-protein pull down assay),並結合液相層析串聯式質譜儀(LC-MS/MS)去剖析受到GAS5調控的蛋白質相互作用組。從結果當中我們鑑定出107個在A549和H1975細胞株和GAS5交互作用的共同蛋白質。在我們實驗室的磷酸化蛋白體分析研究中顯示拓樸異構酶2-alpha (DNA topoisomerase II-alpha, TOP2A)參與黃綠青黴素調控gefitinib抗藥性的路徑,所以我們進一步地挑選出了TOP2A。此外,我們進一步的利用西方墨點法和RNA免疫沉澱法證明TOP2A和GAS5的交互作用。綜合來說,這項研究顯示以E2F1/GAS5/p53途徑作為標的可以作為艾瑞莎抗藥性肺癌的潛在治療策略。 | zh_TW |
| dc.description.abstract | Lung cancer is one of the most common and fatal cancer worldwide. There are two major types of lung cancer, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Recently, gefitinib, a small molecule, which target tyrosine kinase, has been regarded as the first-line treatment in NSCLC patients. However, several patients have been observed tumor recurrence and eventually developed progressive outcomes after target therapy. Thus, an effective therapeutic approach need to be explored. Here, we found that ectopically expressed ATP synthase on plasma membrane exhibited gefitinib-resistance properties in lung cancer cell lines. Furthermore, we unraveled that citreoviridin, an ectopic ATP synthase inhibitor, suppressed the abilities of both proliferation and colony formation in lung cancer cell lines. To elucidate the comprehensive mechanism regulated by citreoviridin, we performed microarray analysis. The results indicated that not only mRNAs but also long non-coding RNAs (lncRNAs) are involved in citreoviridin-treated cell death. One of the well-known lncRNAs, growth arrest-specific transcript (GAS5), was robustly upregulated after citreoviridin treatment. In order to investigate the upstream modulator of GAS5, we utilized chromatin immunoprecipitation (ChIP) assay and revealed that E2F transcription factor 1 (E2F1) could bind to the promoter of GAS5. Consistently, both microarray and qPCR data showed the expression level of E2F1 was negatively correlated to GAS5 after citreoviridin treatment. The evidence suggests that E2F1 might be a potential repressor of GAS5. Furthermore, combining microarray and Gene Set Enrichment Analysis (GSEA) analysis as well as qPCR demonstrated that p53 pathway was activated. To further realize the GAS5-p53 regulating network, RNA-protein pull-down assay followed by LC-MS/MS will be utilized to dissect the GAS5-interacting proteomic profiling.From the results, we identified 107 GAS5-interacting proteins in common from A549 and H1975 cell lines. Our proteomics experiments identified topoisomerase 2-alpha (TOP2A) as the key protein involved in the citreoviridin-regulated gefitinib-resistance pathway, therefore, we picked out TOP2A for further study. Additionally, we further validated the interaction between TOP2A and GAS5 by western blot and RNA immunoprecipitation (RIP). Taken together, this study suggests targeting E2F1/GAS5/p53 axis is a potential therapeutic strategy for gefitinib-resistant lung cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:25:47Z (GMT). No. of bitstreams: 1 ntu-107-R05b43032-1.pdf: 5462345 bytes, checksum: 0cecda1f654b3a39987e817725351c10 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Content
口試委員會審定書 I 謝辭 II 中文摘要 III Abstract V List of Tables XII List of Figures XIII Chapter 1. Introduction 1 1.1 Non-small-cell lung cancer (NSCLC) 1 1.2 Resistance of EGFR tyrosine kinase inhibitors 1 1.3 Ectopic ATP synthase 2 1.4 Long non-coding RNA (lncRNA) 4 1.5 Growth arrest-specific 5 (GAS5) 5 1.6 DNA topoiomerase II alpha (TOP2A) 6 1.7 Previous studies 6 1.7.1 The ATP synthase was ectopically translocated to the plasma membrane of gefitinib-resistant lung cancer cells 6 1.7.2 The cell functional change by citreoviridin treatment of gefitinib-resistant lung cancer cells 8 1.8 Motivation 9 Chapter 2. Materials and Methods 10 2.1 Cell culture 10 2.2 Drug treatment 10 2.3 RNA extraction 11 2.4 Reverse transcription 12 2.5 Real-time quantitative polymerase chain reaction (RT-qPCR) 12 2.6 Chromatin immunoprecipitation (ChIP) 13 2.6.1 In vivo crosslinking and lysis 13 2.6.2 Sonication to shear DNA 13 2.6.3 Crosslinked protein/DNA immunoprecipitation 14 2.6.4 Protein/DNA complexes elution and reverse crosslinks 14 2.6.5 Chromatin DNA purification 15 2.6.6 ChIP-qPCR 15 2.7 Construction of SP6 promoter regions in GAS5 16 2.7.1 PCR amplification 16 2.7.2 Restriction enzyme digestion 17 2.7.3 Gel extraction 17 2.7.4 Ligation 18 2.7.5 Transformation 18 2.7.6 Colony PCR 19 2.7.7 Plasmid DNA purification 19 2.8 RNA-protein pull-down assay 21 2.8.1 In vitro transcription 21 2.8.2 Lithium chloride precipitation 21 2.8.3 RNA 3’ end desthiobiotinylation 22 2.8.4 Protein precipitation 23 2.8.5 RNA-protein pull-down 23 2.8.6 Western blot 24 2.9 Proteome 25 2.9.1 Reduction and alkyation of proteins 25 2.9.2 Gel-assisted digestion 26 2.9.3 Gel extraction 26 2.9.4 ZipTip desalting 27 2.9.5 NanoLC-MS/MS analysis 28 2.9.6 Proteome data analysis 28 2.10 RNA immunoprecipitation (RIP) 29 2.10.1 Lysate preparation 29 2.10.2 RNA-protein complexes immunoprecipitation 30 2.10.3 RNA purification 30 2.10.4 Reverse transcription polymerase chain reaction (RT-PCR) 31 Chapter 3. Results 33 3.1 The ectopic ATP synthase blockade increased the expression level of GAS5 33 3.2 The binding of E2F1 to the GAS5 promoter 34 3.3 The p53 pathway was activated by citreoviridin 36 3.4 The identification of proteins interacting with GAS5 37 Chapter 4. Discussion 40 Chapter 5. Conclusion 44 Reference 45 Tables 58 Figures 101 Appendix 113 | |
| dc.language.iso | en | |
| dc.subject | 艾瑞莎 | zh_TW |
| dc.subject | 黃綠青黴素 | zh_TW |
| dc.subject | 艾瑞莎抗藥性肺癌 | zh_TW |
| dc.subject | 轉錄因子E2F1 | zh_TW |
| dc.subject | 非小型細胞肺癌 | zh_TW |
| dc.subject | 生長抑制轉錄本 5 | zh_TW |
| dc.subject | 拓樸異構? 2-alpha | zh_TW |
| dc.subject | p53 途徑 | zh_TW |
| dc.subject | gefitinib-resistant lung cancer | en |
| dc.subject | p53 pathway | en |
| dc.subject | E2F transcription factor 1 (E2F1) | en |
| dc.subject | Topoisomerase 2-alpha (TOP2A) | en |
| dc.subject | growth arrest- specific transcript (GAS5) | en |
| dc.subject | citreoviridin | en |
| dc.subject | non-small cell lung cancer (NSCLC) | en |
| dc.subject | gefitinib | en |
| dc.title | 將E2F1/GAS5/p53途徑作為標靶以治療艾瑞莎抗藥性肺癌的策略 | zh_TW |
| dc.title | Targeting the E2F1/GAS5/p53 Axis as a Potential Therapeutic Strategy for Gefitinib-Resistant Lung Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃宣誠,王憶卿,許家郎,李岳倫 | |
| dc.subject.keyword | 非小型細胞肺癌,艾瑞莎,黃綠青黴素,生長抑制轉錄本 5,轉錄因子E2F1,p53 途徑,拓樸異構? 2-alpha,艾瑞莎抗藥性肺癌, | zh_TW |
| dc.subject.keyword | non-small cell lung cancer (NSCLC),gefitinib,citreoviridin,growth arrest- specific transcript (GAS5),E2F transcription factor 1 (E2F1),p53 pathway,Topoisomerase 2-alpha (TOP2A),gefitinib-resistant lung cancer, | en |
| dc.relation.page | 124 | |
| dc.identifier.doi | 10.6342/NTU201803856 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-17 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
