Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72122
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧(Shan-hui Hsu)
dc.contributor.authorShih-Hsiang Hsiaoen
dc.contributor.author蕭士翔zh_TW
dc.date.accessioned2021-06-17T06:24:27Z-
dc.date.available2018-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation[1] Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables. Biomaterials 2003; 24: 4337–4351.
[2] Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience 2004; 4: 743–765.
[3] Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Charbord P, Delorme B, Reis RL, Neves NM. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules 2009; 10: 2067–2073.
[4] Wang Q, Wang C, Du X, Liu Y, Ma L. Synthesis, thermosensitive gelation and degradation study of a biodegradable triblock copolymer. J Macromol Sci, Pure Appl Chem 2003; 50: 200–207.
[5] Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. ACS Publications 2014; 86: 3240−3253.
[6] Rengier F, Mehndiratta A, Mehndiratta HV, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery 2010; 5: 335–341.
[7] Mandrycky C, Wang Z, Kimb K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnology Advances 2016; 34: 422–434.
[8] Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. Journal of Biological Engineering 2015; 9: 4.
[9] Park SA, Lee SH, Kim WD. Fabrication of porous polycaprolactone /hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess and Biosystems Engineering 2011; 34: 505–513.
[10] Serra T, Ortiz-Hernandez M, Engel E, Planell JA, Navarro M. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Materials Science and Engineering C 2014; 38: 55–62.
[11] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology 2014; 32: 773–785.
[12] Hoffman AS. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2002; 54(1): 3–12.
[13] Billiet T, Gevaert E, Schryver TD, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 2014; 35: 49–62.
[14] Noble KL. Waterborne polyurethanes. Progress in Organic Coatings 1997; 32: 131–136.
[15] Lee SK, Kim BK. High solid and high stability waterborne polyurethanes via ionic groups in soft segments and chain termini. Journal of Colloid and Interface Science 2009; 336: 208–214.
[16] Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. European Cells and Materials 2003; 5: 1–16.
[17] Kanyanta V, Ivankovic A. Mechanical characterisation of polyurethane elastomer for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 2010; 3: 51–62.
[18] Owen S, Masaoka M, Kawamura R, Sakota N. Biodegradation of poly-d, l-Lactic acid polyurethanes. Journal of Macromolecular Science Part A 1995; A32(4): 843–850.
[19] Yeganeh H, Jamshidi H, Jamshidi S. Synthesis and properties of novel biodegradable poly(ε-caprolactone)/ poly(ethylene glycol)-based polyurethane elastomers. Polymer International 2007; 56: 41–49.
[20] Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 2003; 24: 5163–5171.
[21] Godbey WT, Atala A. In vitro systems for tissue engineering. Annals of the New York Academy of Sciences 2002; 961: 10–26.
[22] Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt R. Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. Journal of Polymer Science: Part A: Polymer Chemistry 2004; 42: 624–638.
[23] Chen Q, Mangadlao JD, Wallat J, Leon AD, Pokorski JK, Advincula RC. 3D printing biocompatible polyurethane/ poly(lactic acid)/ graphene oxide nanocomposites: anisotropic properties. ACS Applied Materials & Interfaces 2017; 9: 4015−4023.
[24] Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 2006; 58: 1655–1670.
[25] Kawaguchi H, Fujimoto K, Mizuhara Y. Hydrogel microspheres III. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid & Polymer Science 1992; 270: 53–57.
[26] Sun X, Gao H, Wu G, Wang Y, Fan Y, Ma J. Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. International Journal of Pharmaceutics 2011; 412: 52–58.
[27] Fu H, Gao H, Wu G, Wang Y, Fan Y, Ma J. Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter 2011; 7: 3546–3552.
[28] Ou CW, Su CH, Jeng US, Hsu Sh. Characterization of biodegradable polyurethane nanoparticles and thermally induced self-assembly in water dispersion. ACS Applied Materials & Interfaces 2014; 6: 5685−5694.
[29] Hsieh FY, Lin HH, Hsu Sh. 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 2015; 71: 48−57.
[30] Lin HH, Hsieh FY, Tseng CS, Hsu Sh. Preparation and characterization of a biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting. Journal of Materials Chemistry B 2016; 4: 6694−6705.
[31] Ho L, Hsu Sh. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Acta Biomaterialia 2018; 70: 57–70.
[32] Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Engineering 2007; 13: 2369−2385.
[33] Shepherd JNH, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG. 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures. Advanced Functional Materials 2011; 21: 47–54.
[34] Zhang T, Wu W, Wang X, Mu Y. Effect of average functionality on properties of UV-curable waterborne polyurethane-acrylate. Progress in Organic Coatings 2010; 68: 201−207.
[35] Rouillard AD, Berglund CM, Lee JY, Polacheck WJ, Tsui Y, Bonassar LJ, Kirby BJ. Methods for photocrosslinking alginate hydrogel scaffolds with high cell Viability. Tissue Engineering:Part C 2011; 17: 173−179.
[36] Occhetta P, Visone P, Russo L, Cipolla L, Moretti M, Rasponi M. VA-086 methacrylate gelatine photopolymerizable hydrogels:A parametric study for highly biocompatible 3D cell embedding. Journal of Biomedical Materials Research Part A 2015; 103A: 2109−2117.
[37] Pyo SH, Wang P, Hwang HH, Zhu W, Warner J, Chen S. Continuous optical 3D printing of green aliphatic polyurethanes. American Chemical Society Applied Materials & Interfaces 2017; 9: 836−844.
[38] Shie MY, Chang WC, Wei LJ, Huang YH, Chen CH, Shih CT, Chen YW, Shen YF. 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications. Materials 2017; 10: 136.
[39] Andriani Y, Min-Wen JC, Yan-Jiang BC, Yee PI, Shyh-Chang N, Siew TW. Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes. Acta Biomaterialia 2017.
[40] Kratky O. Possibilities of X-ray small angle analysis in the investigation of dissolved and solid high polymer substances. Pure Appl. Chem. 1966; 12: 483−523.
[41] Huang CT, Shrestha LK, Ariga K, Hsu Sh. A graphene-polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. J. Mater. Chem. B 2017; 5: 8854−8864.
[42] Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, Li R, Ding Y, Jiang X, Liu B. The effect of hydrophilic chain length and iRGD on drug delivery from poly(-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011; 32: 9525–9535.
[43] Wang F, Hu JQ, Tu WP. Study on microstructure of UV-curable polyurethane acrylate films. Progress in Organic Coatings 2008; 62: 245–250.
[44] Rosalina I, Bhattacharya M. Dynamic rheological measurements and analysis of starch gels. Carbohydrate Polymers 2002; 48: 191–202.
[45] Pereira IHL, Ayres E, Patrício PS, Góes AM, Gomide VS, Junior EP, Oréfice RL. Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibility. Acta Biomaterialia 2010; 6: 3056–3066.
[46] Dautzenberg H. Polyelectrolyte complex formation in highly aggregating systems. 1. Effect of salt: polyelectrolyte complex formation in the presence of NaCl. Macromolecules 1997; 30: 7810–7815.
[47] Yang SM, Kim SH, Lim JM, Yi GR. Synthesis and assembly of structured colloidal particles. J. Mater. Chem 2008; 18: 2177–2190.
[48] Philipse AP, Wierenga AM. On the density and structure formation in gels and clusters of colloidal rods and fibers. Langmuir 1998; 14: 49–54.
[49] Vermonden T, Besseling NAM, Steenbergen MJ, Hennink WE. Rheological studies of thermosensitive triblock copolymer hydrogels. Langmuir 2006; 22: 10180–10184.
[50] Hung KC, Tseng CS, Hsu Sh. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water‐based process for cartilage tissue engineering Applications. Adv. healthc. mater. 2014; 3: 1578–1587.
[51] Tanpichai S, Oksman K. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos. Part A: Appl. Sci. Manuf. 2016; 88: 226–233.
[52] Park J, Lee SJ, Chung S, Lee JH, Kim WD, Lee JY, Park SA. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: characterization and evaluation. Mater. Sci. Eng. C 2017; 71: 678–684.
[53] Feng G, Qin C, Yi X, Xia J, Chen J, Chen X, Chen T, Jiang X. Effect of novel bioresorbable scaffold composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles on inflammation and calcification of surrounding tissues after Implantation. J. Mater. Sci. Mater. Med. 2018; 29: 112.
[54] Garo A, Hrapko M, Dommelen JAW, Peters GWM. Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology 2007; 44: 51–58.
[55] Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE. Substrate modulus directs neural stem cell behavior. Biophysical Journal 2008; 95: 4426–4438.
[56] Lu YB, Franze K, Seifert G, Steinhäuser C, Kirchhoff F, Wolburg H, Guck J, Janmey P, Wei EQ, Käs J, Reichenbach A. Viscoelastic properties of individual glial cells and neurons in the CNS. PNAS 2006; 103: 17759–17764.
[57] Xu C, Lee W, Dai G, Hong Y. Highly elastic biodegradable single-network hydrogel for cell printing. ACS Appl. Mater. Interfaces 2018; 10: 9969−9979.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72122-
dc.description.abstract3D生物列印技術在組織工程與再生醫學領域帶來了革新,經由生物材料與細胞的結合能客製化出組織工程替代物,以達到修復或替換受損組織和器官為目的,因此成為一個相當有吸引力的平台。目前,由於大部分可生物降解的聚合物水凝膠機械穩定性能差,使得在列印的過程中結構傾向於塌陷,因此在開發生物材料上仍然是具有挑戰性。在本研究中,經由環保水性製程的技術,合成出具有雙敏感刺激響應性的可生物降解聚胺酯 (polyurethane, PU) 分散液。製備方法是在PU主鏈的末端引入能紫外線誘導交聯的丙烯酸酯基團,目的是藉由光敏感基團的引入能大幅改善列印性能;在軟鏈段的部分仍然選用混合低聚二醇為熱敏感性的組分。合成出雙刺激性PU分散液通過動態光散射 (dynamic light scattering)、小角X射線散射 (small-angle X-ray scattering) 和流變學測量來驗證PU奈米顆粒的光/熱誘導形態學之變化。結果顯示,這些PU奈米顆粒在經過UV的處理後,顆粒型態多數轉變成棒狀,並且之後在進一步加熱時會形成緻密堆積的結構。藉由其熱敏感性能,固化的PU分散液在接近體溫時能快速的熱凝膠化,並且凝膠模數在0.5–2 kPa範圍內。固化PU水凝膠的流變性能包括動態粘彈性 (dynamic viscoelasticity),蠕變恢復 (creep recovery) 和剪切變稀行為 (shear thinning behavior) 在37°C下能有利於在列印之前與細胞共混合,並且通過微擠壓的3D列印程序以製造含細胞的建構體。雙刺激型水凝膠建構體顯示出比單刺激型 (熱敏感性) 對照組有更高的列印分辨率、形狀保真度以及有更好的細胞存活率和增殖。此外,具有較低模數 (< 1 kPa) 的軟質水凝膠 (PUA3) 可以提供神經幹細胞具有類似 '豆腐' 和穩定的3D微環境,以利於細胞增殖和分化。我們期望此光/熱敏感可生物降解PU墨水可以提供獨特的流變性質,有助於客製化生物列印軟組織。zh_TW
dc.description.abstract3D bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. A common challenge for 3D bioprinting materials is that the structures printed from the biodegradable polymer hydrogels tend to collapse because of the poor mechanical stability. In this study, dual stimuli-responsive biodegradable polyurethane (PU) dispersions (PUA2 and PUA3) were synthesized from an eco-friendly waterborne process. Acrylate group was introduced in the PU chain end to serve as a photo-sensitive moiety for UV-induced crosslinking and improvement of the printability, while mixed oligodiols in the soft segment remained to be the thermo-sensitive moiety. The photo-/thermal-induced morphological changes of PU nanoparticles were verified by dynamic light scattering, small-angle X-ray scattering, and rheological measurement of the dispersions. It was observed that these PU nanoparticles became more rod-like in shape after UV treatment and formed compact packing structures upon further heating. With the thermo-sensitive properties, these UV cured PU dispersions underwent rapid thermal gelation with gel moduli in the range 0.5−2 kPa near body temperature. The rheological properties of the PU hydrogels including dynamic viscoelasticity, creep recovery, and shear thinning behavior at 37°C were favorable for processing by microextrusion-based 3D printing and could be easily mixed with cells before printing to produce cell-laden constructs. The dual-responsive hydrogel constructs demonstrated higher resolution and shape fidelity as well as better cell viability and proliferation than the thermo-responsive control. Moreover, the softer hydrogel (PUA3) with a low modulus (< 1 kPa) could offer neural stem cells a tofu-like, stable, and inductive 3D microenvironment to proliferate and differentiate. We expect that the photo-/thermo-responsive biodegradable polyurethane ink may offer unique rheological properties to contribute toward the custom-made bioprinting of soft tissues.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:24:27Z (GMT). No. of bitstreams: 1
ntu-107-R05549013-1.pdf: 4933612 bytes, checksum: e84c1f26905464bc03486f18ebb3a6e5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 XII
表目錄 XIV
第一章 文獻回顧 1
1.1. 水凝膠介紹 1
1.2. 可生物降解與環境敏感型水凝膠 2
1.3. 三維列印與三維列印材料 2
1.4. 生物3D列印 4
1.5. 聚胺酯 5
1.5.1. 水性聚胺酯 5
1.5.2. 聚胺酯水凝膠於組織工程應用與作為3D列印材料 6
1.6. 溫感型水凝膠 7
1.6.1. 溫感型聚胺酯水凝膠與其作為3D列印材料 8
1.7. 光感型水凝膠 9
1.7.1. 光感型聚胺酯與其作為3D列印材料 9
1.8. 研究目的 11
第二章 研究方法 12
2.1. 研究架構 12
2.2. L型聚乳酸二元醇與D, L型聚乳酸二元醇之合成與純化 14
2.2.1. PLLA diol或PDLLA diol合成 14
2.2.2 PLLA diol或PDLLA diol純化 15
2.3. 合成聚乳酸二元醇分子量測定 15
2.4. 雙刺激型水性可生物降解聚胺酯合成 16
2.4.1. 雙刺激型聚胺酯之配方設計 16
2.4.2. 雙刺激型聚胺酯合成步驟 18
2.5. 聚胺酯奈米粒子基本參數分析 19
2.5.1. 紫外分光光度計 20
2.5.2. 膠體滲透層析儀 20
2.5.3. 動態光散射 20
2.6. 雙刺激型聚胺酯薄膜性質分析 21
2.6.1. 衰减全反射傅立葉紅外光譜儀 21
2.6.2. 熱性質分析 21
2.6.3. 平衡溶脹法 22
2.7. 聚胺酯奈米顆粒之相變化行為分析 22
2.7.1. 小角度X光散射分析 23
2.7.2. 穿透式電子顯微鏡 23
2.7.3. 衰减全反射傅立葉紅外光譜儀 24
2.7.4. X光繞射儀 24
2.8. 雙刺激型聚胺酯相轉換流變分析 24
2.9. 雙刺激型聚胺酯生物墨水的製備與蠕變測量 25
2.10. 細胞培養 26
2.11. 3D生物列印之應用 26
2.11.1.雙刺激型聚胺酯生物墨水與細胞混合與3D bioprinting 26
2.11.2. 雙刺激型聚胺酯列印建構體之體外降解 27
2.11.3. 細胞於列印建構體之存活率測試與染色標定 27
2.11.4. 基因表現與蛋白質染色 28
2.12. 統計學分析 30
第三章 實驗結果 31
3.1. L與D, L型聚乳酸二元醇之核磁共振分析 31
3.2. 優化合成雙刺激型水性聚胺酯的紫外光照射參數 31
3.2.1. 雙刺激型聚胺酯的基礎光學性能 31
3.2.2. 雙刺激型聚胺酯的官能基團分析 32
3.2.3.雙刺激型聚胺酯最適化光聚合參數 32
3.3. 雙刺激型聚胺酯奈米顆粒分散液的物理化學特性 32
3.4. 雙刺激型聚胺酯奈米顆粒在分散體中的刺激敏感特性 33
3.4.1. 雙刺激型聚胺酯奈米顆粒分散液之動態光散射分析 33
3.4.2. 雙刺激型聚胺酯奈米顆粒分散液之穿透式電子顯微鏡攝影 34
3.5. 雙刺激型聚胺酯奈米顆粒分散液的小角度X射線散射結構分析 34
3.5.1. 聚胺酯奈米顆粒分散液之Guinier method分析 34
3.5.2. 聚胺酯奈米顆粒分散液之Kratky method分子量分析 35
3.6. 雙刺激型聚胺酯相變化機制研究 36
3.6.1. 雙刺激型聚胺酯之熱重性質分析 36
3.6.2. 雙刺激型聚胺酯之結晶學分析 36
3.6.3. 雙刺激型聚胺酯之衰退式全反射傅立葉紅外光譜分析 37
3.6.4. 雙刺激型聚胺酯之交聯度分析 37
3.7. 雙刺激型聚胺酯奈米顆粒分散液之流變性能分析 37
3.7.1. 紫外光固化前後聚胺酯奈米顆粒分散液之流變性能分析 37
3.7.2. 固化聚胺酯水凝膠之流變性能分析 38
3.8. 固化聚胺酯水凝膠之抗蠕變性分析 39
3.9. 紫外光固化聚胺酯水凝膠之3D生物列印 39
3.10. 固化聚胺酯水凝膠建構體之體外降解測定 40
3.11. 雙刺激型聚胺酯水凝膠之組織工程實驗 40
3.11.1. 含纖維母細胞的水凝膠建構體之細胞存活率測定 40
3.11.2. 含神經幹細胞的水凝膠建構體之細胞存活率分析 41
3.11.3. 含神經幹細胞的水凝膠建構體之細胞型態分析 42
3.11.4. 含神經幹細胞的水凝膠建構體之基因表現測定 42
3.11.5. 含神經幹細胞的水凝膠建構體之免疫螢光染色分析 43
第四章 討論 44
4.1. 雙刺激型聚胺酯軟鏈段PLLA diol與PDLLA diol 核磁共振分析 44
4.2. 雙重刺激型聚胺酯奈米顆粒分散液之合成 44
4.3. 雙重刺激型聚胺酯奈米顆粒分散液之基本性質分析 45
4.4. 雙重刺激型聚胺酯光照性能 46
4.5. 溫度對雙重刺激型聚胺酯奈米顆粒分散液性質分析 47
4.6. 電解質對雙重刺激型聚胺酯奈米顆粒分散液性質分析 47
4.7. 雙重刺激型聚胺酯奈米顆粒分散液之光響應性能分析 48
4.8. 雙重刺激型聚胺酯奈米顆粒分散液之相變化分析 49
4.9. 以傅立葉紅外光譜分析雙重刺激型聚胺酯奈米顆粒之相變化行為 49
4.10. 雙重刺激型聚胺酯之熱學性質與結晶學分析 50
4.11. 雙重刺激型聚胺酯水凝膠之流變性質分析 51
4.12. 固化聚胺酯水凝膠之3D列印成果 51
4.13. 細胞於固化聚胺酯水凝膠之存活率測試 52
4.14. 神經幹細胞於固化聚胺酯水凝膠之基因表現與免疫螢光染色分析 53
4.15. 未來展望 54
第五章 結論 56
參考文獻 57
附錄一 藥品清單 87
附錄二 儀器清單 88
dc.language.isozh-TW
dc.title雙刺激敏感型可生物降解聚胺酯軟質水凝膠之合成與表徵於細胞共列印應用zh_TW
dc.titleSynthesis and characterization of dual stimuli–sensitive biodegradable polyurethane soft hydrogels for 3D cell-laden bioprintingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張書瑋(Shu-Wei Chang),高震宇(Chen-Yu Kao)
dc.subject.keyword3D生物列印,可生物降解聚胺酯,雙重刺激響應性,蠕變性,軟質水凝膠,zh_TW
dc.subject.keyword3D bioprinting,biodegradable polyurethane,dual stimuli-responsiveness,creep,soft hydrogel,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201803853
dc.rights.note有償授權
dc.date.accepted2018-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved