Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72105
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor童心欣(Hsin-hsin Tung)
dc.contributor.authorYu-Chang Chouen
dc.contributor.author周鈺錩zh_TW
dc.date.accessioned2021-06-17T06:23:37Z-
dc.date.available2020-11-13
dc.date.copyright2020-11-13
dc.date.issued2020
dc.date.submitted2020-10-07
dc.identifier.citationAltimira. F., Yáñez. C., Bravo. G., González. M., Rojas. L. A. and Seeger. M. 2012. “Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile.” BMC Microbiology, 12(1): 193.
Antizar-Ladislao. B1. Bhattacharya. BD., Ray Chaudhuri. S., Sarkar. SK. 2015. “Impact of silver nanoparticles on benthic prokaryotes in heavy metal-contaminated estuarine sediments in a tropical environment.” Mar Pollut Bull, 99(1-2): 104-11.
Barceloux. DG., Barceloux. D., 1999. “Copper.” Journal of Toxicology: Clinical Toxicology, 37:2,217-230
Barlas. N., Akbulut. N., Aydogan. M. 2005. “Assessment of Heavy Metal Residues in the Sediment and Water Samples of Uluabat Lake, Turkey.” Bull Environ Contam Toxicol, 74, 286-293.
Barlas. N. 1999. “Histopathological examination of gill, liver and kidney tissues of carp (Cyprinus carpio L., 1758) fish in the upper Sakarya River Basin.” Turkish Journal of Veterinary and Animal Sciences, 23: 277-284.
Battin, T. J., Kaplan. L. A., Findlay. S., Hopkinson. C. S., Marti. E., Packman. A. I., Newbold. J. D., Sabater. F. 2008. “Biophysical controls on organic carbon fluxes in fluvial networks.” Nature Geoscience, 1: 95-100.
Besaury. L., Pawlak. B. and Quillet. L. 2016. “Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions.” Environmental Science and Pollution Research, 23(5): 4013-4023.
Cheng. W., Zhang. J., Wang. Z., Wang. M., Xie. S. 2014. “Bacterial communities in sediments of a drinking water reservoir.” Annals of Microbiology, 64(2): 875-878.
Costa. PS., Reis. MP., Á vila. MP., Leite. LR., de Araújo. FMG., Salim. ACM. 2015. “Metagenome of a Microbial Community Inhabiting a Metal-Rich Tropical Stream Sediment. ” PLos ONE, 10(3):e0119465
Dell’Amico. E., Mazzocchi. M., Cavalca L., Allievi L., and Andreoni. V. 2008. “Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil.” Microbiological Research, 163(6): 671-683.
Durate. B., Freitas. J., Cacador. I. 2012. “Sediment microbial activities and physic-chemistry as progress indicators of salt marsh restoration processes.” Ecological Indicators, 19:231-239 (2012).
Förstner. U., Müller. G. 1973. “Heavy metal accumulation in river sediments: A response to environmental pollution.” Geoforum, 4(2): 53-61.
Fu. J., Zhao. C., Luo. Y., Liu. C., Kyzas. GZ., Luo. Y., Zhao. D., An. S., Zhu. H. 2014. “Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors.” Journal of Hazardous Materials, Volume 270, 102-109.
Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S. 2012. “Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.” Plos One, 7(5): e38040.
Jie. S., Li. M., Gan. M., Zhu. J., Yin. H., and Liu. X. 2016. “Microbial functional genes enriched in the Xiangjiang River sediments with heavy metal contamination.” BMC Microbiol, 16(1): 179.
Kemp. PF., Aller. JY. 2004. “Estimating prokaryotic diversity: When are 16S rRNA libraries large enough?” Limnology and Oceanography: Methods, 2: 114–125.
Kuo. HW., Huang. CY., Chang. CN., Lee. PL., Chen. YW., Huang. CF., Chang. HH., Tang. YH., Zeng. SZ., Li. GY., Lin. CR., Chen. LZ. 2016. “Identification of diverse bacterial communities for potential bio-aids capable of troubleshooting for wastewater biological treatment processes.” International Journal of Environmental Science and Technology, Doi: 10.1007/s13762-016-1176-z.
Lozada. M, Marcos. MS., Commendatore. MG., Gil. MN., Dionisi. HM. 2014. “The bacterial community structure of hydrocarbon-polluted marine environments as the basis for the definition of an ecological index of hydrocarbon exposure.” Microb. Environ, 29, 269–276.
Quillet. L., Besaury. L., Popova. M., Paissé. S., Deloffre. J., Ouddane. B. 2012. “Abundance, diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway Estuary (UK).” Mar Biotechnol, 14(3): 363-81.
Marcheggiani. S., Mancini. L. 2011. “Microbiological quality of river sediments and primary prevention.” InTech. DOI: 10.5772/23883
Merian. E. 1991 “Metals and their compounds in the environment: occurrence, analysis, and biological relevance.” VCH New York, ISBN 0-89573-562-8.
Nelson. D., and Sommers. LE. 1982. “Total carbon, organic carbon, and organic matter.” Methods of soil analysis, Part 2. Chemical and microbiological properties(methodsofsoilan2): 539-579.
Nightingale. HI. 1987. “Accumulation of As, Ni, Cu, and Pb in retention and recharge basin soils from urban runoff.” Water Resources Bulletin, 23:663-672.
Pace. NR. 1997. “A molecular view of microbial diversity and the biosphere.” Science, 276(5313): 734-740.
Pereira. LB., Vicentini. R., Ottoboni. LMM.. 2015. “Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine.” Genetics and Molecular Biology, 38:484-489.
Sakadevan. K., Zheng. H. and Bavor. H. 1999. “Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater.” Water Sci. Technol, 40: 349–355.
Subrahmanyam. G., Shen. JP., Liu. YR., Archana. G., Zhang. LM. 2016. “Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.” Environ Monit Assess, 188(2): 112.
Sun. SJ., Xu. J., Dai. SG., and Han. X. 2006. “Influences of copper speciation on toxicity to microorganisms in soils.” Biomed Environ Sci, 19(6): 409-413.
Thiyagarajan. V., Tsoi. MM., Zhang. W., Qian. PY. 2010. “Temporal variation of coastal surface sediment bacterial communities along an environmental pollution gradient.” Mar. Environ. Res, 70: 56–64.
Torsvik. V., Sorheim. R., Goksoyr. J. 1996. “Total bacterial diversity in soil and sediment communities—A review.” Journal of Industrial Microbiology, 17: 170-178.
U.S. Environment Protection Agency, Selecting Remediation Technique for Contaminated Sediment. USEPA: 1993.
van Beelen. P. 2003. “A review on the application of microbial toxicity tests for deriving sediment quality guidelines.” Chemosphere, 53(8): 795-808.
Wakelin. SA., Chu. G., Lardner. R., Liang. Y., and McLaughlin. M. 2010. “A single application of Cu to field soil has long-term effects on bacterial community structure, diversity, and soil processes.” Pedobiologia, 53(2): 149-158.
Ward N. 2006. “Minireview: New directions and interactions in metagenomics research.” FEMS Microbiol, Ecol 55: 331-338.
Wang. H., Wang. FY., Wei. ZQ., Hu. HY. 2011. “Quinone profiles of microbial communities in sediments of Haihe River-Bohai Bay as influenced by heavy metals and environmental factors.” Environ Monit Assess, 176(1-4): 157-67.
Yi. YJ., Yang. ZF., Zhang SH. 2011. “Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin.” Environ. Pollut, 159, 2575-2585.
Zhang. W., Ki. J., Qian. P. 2008. “Microbial diversity in polluted harbor sediments. I: Bacterial community assessment based on four clone libraries of 16S rDNA.” Estuarine, Coastal and Shelf Science, 76: 668–681.
Zhang. MJ., Huang. FK., Wang. GY., Liu. XY., Wen. JK., Zhang. XS., Huang. YS., and Xia. Y. 2017. “Geographic distribution of cadmium and its interaction with the microbial community in Longjiang River: risk evaluation after a shocking pollution accident.” Scientific Reports, 7:227.
土壤及地下水污染整治法. 民99年2月3日.
行政院環境保護署, 底泥污染來源及傳輸模式調查計畫-以重點河川為例. 行政院環境保護署: 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72105-
dc.description.abstract本研究探討以底泥微生物菌群變化作為銅污染源鑑識之可行性。研究方法以模擬河川底泥反應槽進行分析,以河水添加不同濃度硫酸銅連續暴露底泥的方式進行研究。反應槽取用老街溪河水及底泥,於河水中添加硫酸銅作為進流,每周定時採取進出流分析,並於第0、14、28、56天取底泥樣品,對其萃取出的核酸進行次世代定序,檢測微生物菌群變化。藉由相關性分析及樣品微生物族群受底泥模擬接觸反應槽環境條件影響分析各自找出了與銅濃度具有相關性之菌屬,將兩者結果比對後篩選出之菌屬分別為Levilinea、Ornatilnea、Longilinea、Methylocystis、Mycobacterium、Sulfuricella、Candidatus Cloacamonas、Ignavibacterium、以及Subdivision3_genera_incertae_sedis此9屬。此9菌屬有機會以其族群變化作為銅污染鑑識技術的可能性。未來建議增加現地試驗驗證後可利用其消長變化作為鑑識污染來源的指標。zh_TW
dc.description.abstractThis study investigates the possibility of applying microbial community profile changes of sediments to copper pollution source identification. Sediment microcosm monitoring was used in this study. In the sediment microcosm, river water spiked with different concentrations of copper sulfate was used as the influent and cultured for 8 weeks. Water samples (influents and effluents) were collected periodically, and sediments were collected at 0, 2nd, 4th, and 8th weeks. And, crude nucleic acids in sediments were also extracted, cleaned and sent for 16S r-RNA gene amplicon sequencing by next generation sequencing with MiSeq platform (Illumina). The microbial sequence results from the sediment microcosms with Pearson correlation analysis and canonical correspondence analysis, showed that the abundance of Levilinea, Ornatilnea, Longilinea, Methylocystis, Mycobacterium, Sulfuricella, Candidatus Cloacamonas, Ignavibacterium and Subdivision3_genera_incertae_sedis were correlated with copper concentration in microcosm. These families were possible candidates for copper pollution source tracking in rivers or streams.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:23:37Z (GMT). No. of bitstreams: 1
U0001-0510202012403200.pdf: 4734596 bytes, checksum: d397a793060729fc7241823e407dd4d0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 V
圖目錄 VIIII
表目錄 XII
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 底泥重金屬 3
2.2 底泥銅污染現狀 3
2.3 底泥微生物 4
2.4 銅污染影響微生物變化 5
2.5 底泥微生物族群變化 7
2.6 高通量定序應用於受污染底泥中微生物分析 8
第三章 研究方法與材料 10
3.1 實驗架構 10
3.2 模擬底泥接觸反應槽裝置以及樣本採集 12
3.2.1 現地採樣 12
3.2.2 反應槽設置 12
3.2.3 水樣、底泥採樣頻率 14
3.3 pH值、導電度、濁度測量 14
3.4 水中總有機碳分析(Total Organic Carbon, TOC) 15
3.5 水中銅濃度分析 15
3.6 水中硫酸鹽分析 15
3.7 水中氨氮分析 16
3.8 水中正磷酸鹽分析 16
3.9 底泥之銅濃度分析 16
3.10 底泥之有機質含量分析 18
3.11 反應槽底泥樣品核酸萃取及前處裡 19
3.12 高通量次世代定序 20
3.12.1 聚合酶連鎖反應 (PCR) 21
3.12.2 高通量定序 (high throughput sequencing) 22
3.12.3 序列整理 (reads pre-processing) 22
3.12.4 操作分類單元(OTU)分類與菌種分析 22
3.12.5 微生物族群組成百分比分析 23
3.13 統計方法(相關性分析) 23
3.14 樣品微生物族群受底泥模擬接觸反應槽環境條件影響分析 24
第四章 實驗結果 25
4.1 反應槽進出流水質參數 25
4.1.1 pH值 25
4.1.2 導電度 26
4.1.3 濁度 28
4.1.4 總有機碳 29
4.1.5 銅濃度 30
4.1.6 硫酸鹽 31
4.1.7 氨氮 32
4.1.8 正磷酸鹽 33
4.2 反應槽底泥參數 34
4.2.1 底泥累積銅濃度 34
4.2.2 有機質含量 36
4.3 高通量次世代定序 37
4.3.1 相關性分析 38
4.3.2 樣品微生物族群受底泥模擬接觸反應槽環境條件影響分析 42
第五章 結果討論 52
5.1 反應槽進出流水質參數 52
5.2 反應槽底泥參數 53
5.3 高通量次世代定序 54
第六章 結論與建議 59
6.1 結論 59
6.2 建議 60
參考文獻 61
附錄 66
附錄一 高通量定序使用之barcodes 66
dc.language.isozh-TW
dc.subject銅zh_TW
dc.subject硫酸銅zh_TW
dc.subject底泥zh_TW
dc.subject微生物菌群分布zh_TW
dc.subject次世代定序zh_TW
dc.subjectsedimentsen
dc.subjectcopper sulfateen
dc.subjectmicrobial community profileen
dc.subjectnext generation sequencingen
dc.subjectcopperen
dc.title以模擬底泥反應槽之菌群分布作為鑑識銅汙染源指標zh_TW
dc.titleCopper Pollution Source Identification by Microbial Community Profiling of Sediment Microcosmen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林立虹(Li-Hung Lin),江殷儒(Yin-Ru Chiang),于昌平(Chang-Ping Yu)
dc.subject.keyword銅,硫酸銅,底泥,微生物菌群分布,次世代定序,zh_TW
dc.subject.keywordcopper,copper sulfate,sediments,microbial community profile,next generation sequencing,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202004236
dc.rights.note有償授權
dc.date.accepted2020-10-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
Appears in Collections:環境工程學研究所

Files in This Item:
File SizeFormat 
U0001-0510202012403200.pdf
  Restricted Access
4.62 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved