Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72102
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳凱儀(Kai-Yi Chen)
dc.contributor.authorJi-Chin Lien
dc.contributor.author李繼勤zh_TW
dc.date.accessioned2021-06-17T06:23:28Z-
dc.date.available2020-08-23
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation方昱富 (2018) 高溫下番茄花粉數量及花粉活性之數量性狀基因座定位及轉錄體分析。國立臺灣大學生物資源暨農學院農藝學系碩士論文。臺北。臺灣。
Atanassova, B. (1976) Inheritance studies on some components connected with exserted stigma in tomatoes and the influence of different environments on its manifestations. Tomato Genetics Cooperative 26: 2-4.
Barrett, S. C. (2002) Evolution of sex: the evolution of plant sexual diversity. Nature Reviews Genetics 3(4): 274.
Bergougnoux, V. (2014) The history of tomato: from domestication to biopharming. Biotechnology Advances 32(1): 170-189.
Bernacchi, D. and S. D. Tanksley (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147(2): 861-877.
Chen, K. Y. and S. D. Tanksley (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168(3): 1563-1573.
Chetelat, R. T., P. Cisneros, L. Stamova, C. M. Rick (1997) A male-fertile Lycopersicon esculentum× Solanum lycopersicoides hybrid enables direct backcrossing to tomato at the diploid level. Euphytica 95(1): 99-108.
Chusreeaeom, K., T. Ariizumi, E. Asamizu,Y. Okabe, K. Shirasawa, H.Ezura (2014). A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary. Molecular Genetics and Genomics 289(3): 399-409.
Chusreeaeom, K., T. Ariizumi, E. Asamizu,Y. Okabe, K. Shirasawa, H.Ezura (2014) Regulatory change in cell division activity and genetic mapping of a tomato (Solanum lycopersicum L.) elongated-fruit mutant. Plant Biotechnology 31(2): 149-158.
Driedonks, N., M. Wolters-Arts, H. Huber, G. J, de Boer, W. Vriezen, C. Mariani, and I. Rieu (2018) Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica 214(4): 67.
El Ahmadi, A. B. and M. A. Stevens (1979) Genetics of high-temperature fruit set in the tomato [Cultivars]. Journal American Society for Horticultural Science 104(5): 691-696.
Frary, A., T. C. Nesbitt, S. Grandillo, E. vander Knaap, B. Cong, J. Liu, J. Meller, R. Elber, K. B. Alpert, S. D. Tanksley (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85-88.
Fulton, T., T. Beck-Bunn, D. Emmatty, Y. Eshed, J. Lopez, V. Petiard, J. Uhlig, D. Zamir, S. D. Tanksley, (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theoretical and Applied Genetics 95(5-6): 881-894.
Georgiady, M. S., R. W. Whitkus and E. M. Lord (2002) Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161(1): 333-344.
Godfray, H. C. J., J. R. Beddington, I. R. Crute, L.Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas,and C. Toumin (2010) Food security: the challenge of feeding 9 billion people. Science 327: 812-818.
Gorguet, B., P. M. Eggink, J. Ocaña, A. Tiwari, D. Schipper, R. Finkers, R. G. F. Visser, A. W. van Heusden (2008) Mapping and characterization of novel parthenocarpy QTLs in tomato. Theoretical and Applied Genetics 116(6): 755-767.
Grandillo, S., H. M. Ku, S. D. Tanksley (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Molecular Breeding 2(3): 251-260.
Hanna, H. Y. (1982) Response of six tomato genotypes under summer and spring conditions in Louisiana. Hort Science 17: 758-759.
Iwahori, S. (1965) High temperature injuries in tomato. IV. Journal of the Japanese Society for Horticultural Science 34(1): 33-41.
Iwahori, S. (1966). High temperature injuries in tomato. V. Journal of the Japanese Society for Horticultural Science 35(4): 379-386.
Iwahori, S. and K. Takahashi (1964). High temperature injuries in tomato. III. Journal of the Japanese Society for Horticultural Science 33(1): 67-74.
Kalisz, S., D. Vogler, B. Fails, M. Finer, E. Shepard, T. Herman, and R. Gonzales (1999) The mechanism of delayed selfing in Collinsia verna (Scrophulariaceae). American Journal of Botany 86(9): 1239-1247.
Karron, J. D., R. T. Jackson, N. N. Thumser,and S. L. Schlicht (1997) Outcrossing rates of individual Mimulus ringens genets are correlated with anther–stigma separation. Heredity 79(4): 365.
Ladizinsky, G. (1985) Founder effect in crop-plant evolution. Economic Botany 39(2): 191-199.
Levin, I., A. Cahaner, H. D. Rabinowitch, and Y. Elkind (1994) Effects of the ms10 gene, polygenes and their interaction on pistil and anther-cone lengths in tomato flowers. Heredity 73(1): 72.
Lippman, Z. and S. D. Tanksley (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158(1): 413-422.
Lohar, D. and W. Peat (1998) Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia Horticulturae 73(1): 53-60.
Miller, J. and S. Tanksley (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics 80(4): 437-448.
Motten, A. F. and J. Antonovics (1992) Determinants of outcrossing rate in a predominantly self‐fertilizing weed, Datura stramonium (Solanaceae). American Journal of Botany 79(4): 419-427.
Motten, A. F. and J. L. Stone (2000) Heritability of stigma position and the effect of stigma‐anther separation on outcrossing in a predominantly self‐fertilizing weed, Datura stramonium (Solanaceae). American Journal of Botany 87(3): 339-347.
Moyle, L. C. (2007) Comparative genetics of potential prezygotic and postzygotic isolating barriers in a Lycopersicon species cross. Journal of Heredity 98(2): 123-135.
Nesbitt, T. C. and S. D. Tanksley (2001) fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Plant Physiology 127(2):575-583.
Olsen, K. M., and J. F. Wendel (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annual Review of Plant Biology 64: 47-70
Palmer, J. D. and D. Zamir (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proceedings of the National Academy of Sciences United States of America 79(16): 5006-5010.
Pan, C., L.Ye, Y. Zheng, Y. Wang, D. Yang, X. Liu, L. Chen, Y. Zhang, Z. Fei, and G. Lu (2017) Identification and expression profiling of microRNAs involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics 18(1): 843.
Richards A. J. (1997) Plant Breeding Systems, Chapman & Hall, London. Ed. 2, pp. 242–296
Rick, C. M. (1995) Tomato, Evolution of Crop Plants, edited by J. Smartt and N. W. Simmonds. Longman Scientific & Technical, New York. pp. 452–457.
Rick, C. M. (1988). Evolution of mating systems in cultivated plants. Plant evolutionary biology, Springer: 133-147.
Rick, C. M. (1982) Genetic-relationships between self-incompatibility and floral traits in the tomato species. Biologisches Zentralblatt 101(2): 185-198.
Rick, C. M., J. F. Fobes, M. Holle (1977) Genetic variation in Lycopersicon pimpinellifolium: Evidence of evolutionary change in mating systems. Plant Systematics and Evolution 127(2-3): 139-170.
Rick, C. M., E. Kesicki, J. F. Fobes, M. Holle (1976) Genetic and biosystematic studies on two new sibling species of Lycopersicon from interandean Peru. Theoretical and Applied Genetics 47(2): 55-68.
Rick, C. M. and W. H. Dempsey (1969) Position of the stigma in relation to fruit setting of the tomato. Botanical Gazette 130(3): 180-186.
Rick, C. M. and R. Lamm (1955) Biosystematic studies on the status of Lycopersicon chilense. American Journal of Botany 42(7): 663-675.
Rudich, J.,E. Zamski, and Y. Regev (1977). Genotypic variation for sensitivity to high temperature in the tomato: pollination and fruit set. Botanical Gazette, 138(4), 448-452.
Saeed, A. S. I. F., Hayat, K., Khan, A. A., and Iqbal, S. A. J. I. D. (2007) Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). International Journal of Agriculture and Biology 9(4): 649-652.
Scott, J. and W. L. George (1980) Breeding and combining ability of heterostylous genotypes for hybrid seed production in Lycopersicon esculentum Mill. Euphytica 29(1): 135-144.
Sugiyama, T., S. Iwahori, K. Takahashi (1965) Effect of high temperature on fruit setting of tomato under cover. ISHS Acta Horticulturae 4: Symposium on Vegetable Growing under Glass. pp.63-69.
Sun, L., G. R. Rodriguez, J. P. Clevenger, E. I. Berenguer, J. Lin, J. J. Blakeslee, W. Liu, Z. Fei, A. Wijeratne, T. Meulia, and E. van der Knaap (2015) Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. Journal of Experimental Botany 66(20): 6471-6482.
Víquez-Zamora, M., B. Vosman, H.van de Geest, A. Bovy , R. GF Visser, R. Finkers, and A. W. Van Heusden (2013) Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics 14(1): 354.
Xu, J., N. Driedonks, M. J. M. Rutten, W. H. Vriezen, G. J. de Boer, and I. Rieu (2017) Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding 37(5): 58.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72102-
dc.description.abstractCLN1621是一種耐熱番茄品種,在高溫下顯現柱頭外突的性狀。本研究採用遺傳定位的策略分析造成CLN1621品種柱頭外突表現型的遺傳因子。由CA4和CLN1621雜交產生的F7重組自交系用於收集在熱逆境和正常生長條件下的外表型和基因型資料。數量性狀基因座分析結果顯示在熱逆境生長條件下的四個重複試驗中皆辨識到相同的柱頭外突數量性狀基因座。該數量性狀基因座位於第一對染色體32.4 cM位置,並與單核苷多型性分子標記1_3048786緊密連鎖。柱頭外突數量性狀基因座可歸因於高溫影響花柱長度變化的數量性狀基因的作用。zh_TW
dc.description.abstractCLN1621, a heat-tolerant tomato cultivars, shows stigma exsertion phenotype at high temperature. The current study deployed the genetic mapping strategy to characterize the genetic components responsible for the stigma exsertion phenotype in the CLN1621 cultivar. The F7 recombinant inbred lines from the cross of CA4 and CLN1621 were used to collect phenotypic data and genotypic data under heat stress and normal growth conditions. The quantitative trait locus (QTL) analysis consistently identified the same stigma exserted QTL in four replicated trials under heat stress growth condition. This QTL is closely linked with the SNP marker 1_3048786 and is located at 32.4 cM on chromosome 1. The effect of this stigma exsertion QTL is attributed to the QTL controlling variation of style length by high temperature.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:23:28Z (GMT). No. of bitstreams: 1
ntu-107-R05621118-1.pdf: 3272976 bytes, checksum: 3244f70ca20ad516dfba35dfaff198c3 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
口委審定書 i
致謝 ii
中文摘要 iii
Abstract iv
圖目錄 vii
表目錄 viii
第一章  前言 1
1.1 柱頭外突介紹 1
1.2 高溫對柱頭外突之影響 4
第二章  研究目的及研究策略 6
第三章  材料與方法 7
3.1  試驗材料 7
3.2  外表型資料 8
3.3  基因型資料 10
3.4  遺傳連鎖圖譜 10
3.5  統計分析方法 11
第四章  結果 12
4.1  CA4×CLN1621 重組自交系族群 12
4.2  遺傳因子與環境因子對個別性狀的影響 17
4.3  不同性狀之間的相關性 28
4.4  個別性狀數量性狀基因座的遺傳定位結果 34
第五章  討論 49
5.1 柱頭外突相關QTL 49
5.2  果實重量相關QTL 51
第六章  結論 53
引用文獻 54
dc.language.isozh-TW
dc.subject柱頭外突zh_TW
dc.subject數量性狀基因座zh_TW
dc.subject耐熱zh_TW
dc.subject番茄zh_TW
dc.subject分子標誌zh_TW
dc.subjectQTL mappingen
dc.subjectheat toleranceen
dc.subjectSolanumen
dc.subjectlycopersicumen
dc.subjectmolecular markeren
dc.subjectstigma exsertionen
dc.title耐熱番茄品系CLN1621柱頭外突性狀的遺傳分析zh_TW
dc.titleGenetic Characterization for Stigma Exsertion of the Heat‑Tolerant Tomato Variety CLN1621en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡凱康(Kai-Kang Hu),董致韡(Chih-Wei Tung),蔡育彰(Yu-Chang Tsai)
dc.subject.keyword耐熱,番茄,分子標誌,柱頭外突,數量性狀基因座,zh_TW
dc.subject.keywordheat tolerance,Solanum,lycopersicum,molecular marker,stigma exsertion,QTL mapping,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201802553
dc.rights.note有償授權
dc.date.accepted2018-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved