請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72095完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | |
| dc.contributor.author | Chun-Kai Chang | en |
| dc.contributor.author | 章鈞凱 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:23:06Z | - |
| dc.date.available | 2020-08-23 | |
| dc.date.copyright | 2018-08-23 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-17 | |
| dc.identifier.citation | [1] World Health Organization, Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and central Asia. World Health Organization Regional Office for Europe, 2013.
[2] R. Esworthy, 'Air quality: EPA’s 2013 changes to the particulate matter (PM) standard,' Congressional Research Service, pp. 7-5700, 2013. [3] World Health Organization. (2014). 7 million premature deaths annually linked to air pollution. Available: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ [4] H. Ritchie and M. Roser. (2018). Air Pollution. Available: https://ourworldindata.org/air-pollution [5] N. Wang, X. Mao, S. Zhang, J. Yu, and B. Ding, 'Electrospun nanofibers for air filtration,' in Electrospun Nanofibers for Energy and Environmental Applications: Springer, 2014, pp. 299-323. [6] K. Yoon, B. S. Hsiao, and B. Chu, 'Functional nanofibers for environmental applications,' Journal of Materials Chemistry, vol. 18, no. 44, 2008. [7] D. Lolla, M. Lolla, A. Abutaleb, H. Shin, D. Reneker, and G. Chase, 'Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols,' Materials, vol. 9, no. 8, 2016. [8] X. Wang, F. Sun, G. Yin, Y. Wang, B. Liu, and M. Dong, 'Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review,' Sensors (Basel), vol. 18, no. 2, Jan 24 2018. [9] Web of Science by Clarivate Analytics. Result of 'Electrospinning' AND 'Air filtration' as keywords [Online]. [10] G. Liu et al., 'A review of air filtration technologies for sustainable and healthy building ventilation,' Sustainable Cities and Society, vol. 32, pp. 375-396, 2017. [11] W. C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons, 2012. [12] TSI Incorporated. MECHANISMS OF FILTRATION FOR HIGH EFFICIENCY FIBROUS FILTERS. Available: http://www.tsi.com/uploadedFiles/_Site_Root/Products/Literature/Application_Notes/ITI-041.pdf [13] C.-S. Wang, 'Electrostatic forces in fibrous filters—a review,' Powder Technology, vol. 118, no. 1, pp. 166-170, 2001/08/08/ 2001. [14] C.-S. Wang and Y. Otani, 'Removal of Nanoparticles from Gas Streams by Fibrous Filters: A Review,' Industrial & Engineering Chemistry Research, vol. 52, no. 1, pp. 5-17, 2012. [15] R. C. Brown, Air Filtration: An Integrated Approach to the Theory and Applications of Fibrous Filters. Elsevier Science & Technology Books, 1993. [16] Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, 'A review on polymer nanofibers by electrospinning and their applications in nanocomposites,' Composites Science and Technology, vol. 63, no. 15, pp. 2223-2253, 2003. [17] W. G. Lindsley, NIOSH Manual of Analytical Methods (Filter Pore Size and Aerosol Sample Collection ). 2016. [18] J. Van Turnhout, J. W. C. Adamse, and W. J. Hoeneveld, 'Electret filters for high-efficiency air cleaning,' Journal of Electrostatics, vol. 8, no. 4, pp. 369-379, 1980/04/01/ 1980. [19] S.-H. Huang, C.-W. Chen, C.-P. Chang, C.-Y. Lai, and C.-C. Chen, 'Penetration of 4.5nm to aerosol particles through fibrous filters,' Journal of Aerosol Science, vol. 38, no. 7, pp. 719-727, 2007. [20] B. Maze, H. Vahedi Tafreshi, Q. Wang, and B. Pourdeyhimi, 'A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures,' Journal of Aerosol Science, vol. 38, no. 5, pp. 550-571, 2007. [21] P. Li, C. Wang, Y. Zhang, and F. Wei, 'Air Filtration in the Free Molecular Flow Regime: A Review of High-Efficiency Particulate Air Filters Based on Carbon Nanotubes,' Small, vol. 10, no. 22, pp. 4543-4561, 2014. [22] X. Zhao, S. Wang, X. Yin, J. Yu, and B. Ding, 'Slip-Effect Functional Air Filter for Efficient Purification of PM2.5,' Sci Rep, vol. 6, p. 35472, Oct 17 2016. [23] H. Kiyohiko, 'Process for manufacturing artificial silk and other filaments by applying electric current,' Patent US1699615A, 1929. [24] F. Anton, 'Process and apparatus for preparing artificial threads,' Patent US1975504A, 1934. [25] G. Taylor, 'Disintegration of water drops in an electric field,' Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, no. 1382, pp. 383-397, 1964. [26] J. Doshi and D. H. Reneker, 'Electrospinning process and applications of electrospun fibers,' Journal of electrostatics, vol. 35, no. 2-3, pp. 151-160, 1995. [27] G. Eda and S. Shivkumar, 'Bead-to-fiber transition in electrospun polystyrene,' Journal of Applied Polymer Science, vol. 106, no. 1, pp. 475-487, 2007. [28] Y. Qingbiao et al., 'Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning,' Journal of Polymer Science Part B: Polymer Physics, vol. 42, no. 20, pp. 3721-3726, 2004. [29] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, 'Structure and process relationship of electrospun bioabsorbable nanofiber membranes,' Polymer, vol. 43, no. 16, pp. 4403-4412, 2002. [30] V. V. Kadam, L. Wang, and R. Padhye, 'Electrospun nanofibre materials to filter air pollutants – A review,' Journal of Industrial Textiles, vol. 47, no. 8, pp. 2253-2280, 2016. [31] R. Gopal, S. Kaur, Z. Ma, C. Chan, S. Ramakrishna, and T. Matsuura, 'Electrospun nanofibrous filtration membrane,' Journal of Membrane Science, vol. 281, no. 1-2, pp. 581-586, 2006. [32] G. T. Kim, Y. C. Ahn, and J. K. Lee, 'Characteristics of Nylon 6 nanofilter for removing ultra fine particles,' Korean Journal of Chemical Engineering, vol. 25, no. 2, pp. 368-372, 2008. [33] C. Liu et al., 'Transparent air filter for high-efficiency PM2.5 capture,' Nat Commun, vol. 6, p. 6205, Feb 16 2015. [34] J. Li, F. Gao, L. Q. Liu, and Z. Zhang, 'Needleless electro-spun nanofibers used for filtration of small particles,' Express Polymer Letters, vol. 7, no. 8, pp. 683-689, 2013. [35] Z. Li et al., 'Fabrication of a polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration,' RSC Advances, vol. 6, no. 94, pp. 91243-91249, 2016. [36] S. Wang, X. Zhao, X. Yin, J. Yu, and B. Ding, 'Electret Polyvinylidene Fluoride Nanofibers Hybridized by Polytetrafluoroethylene Nanoparticles for High-Efficiency Air Filtration,' ACS Appl Mater Interfaces, vol. 8, no. 36, pp. 23985-94, Sep 14 2016. [37] A. Zulfi et al., 'Air filtration media from electrospun waste high-impact polystyrene fiber membrane,' Materials Research Express, vol. 5, no. 3, 2018. [38] R. Gerhard-Multhaupt, 'Electrets: Dielectrics with quasi-permanent charge or polarization,' IEEE transactions on electrical insulation, no. 5, pp. 531-554, 1987. [39] M. Faraday, 'Experimental researches in electricity. fifteenth series,' Philosophical Transactions of the Royal Society of London, vol. 129, pp. 1-12, 1839. [40] R. Gerhard‐Multhaupt, 'Electrets,' in Wiley Encyclopedia of Electrical and Electronics Engineering, 1999. [41] G. H. Sessler, G. M. Sessler, M. G. Broadhurst, and R. Gerhard-Multhaupt, Electrets (no. 1). Laplacian Press, 1998. [42] M. Mishra, Concise Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. CRC Press, 2017. [43] G. Sessler and J. West, 'Self‐biased condenser microphone with high capacitance,' The Journal of the Acoustical Society of America, vol. 34, no. 11, pp. 1787-1788, 1962. [44] H. Kawai, 'The piezoelectricity of poly (vinylidene fluoride),' Japanese Journal of Applied Physics, vol. 8, no. 7, p. 975, 1969. [45] J. McFee, J. Bergman Jr, and G. Crane, 'Pyroelectric and nonlinear optical properties of poled polyvinylidene fluoride films,' Ferroelectrics, vol. 3, no. 1, pp. 305-313, 1972. [46] S. Bauer, R. Gerhard-Multhaupt, and G. M. Sessler, 'Ferroelectrets: Soft Electroactive Foams for Transducers,' Physics Today, vol. 57, no. 2, pp. 37-43, 2004. [47] L. Carlioz, J. Delamare, S. Basrour, and G. Poulin, 'Hybridization of magnetism and piezoelectricity for an energy scavenger based on temporal variation of temperature,' in Design, Test, Integration and Packaging of MEMS/MOEMS, 2008. MEMS/MOEMS 2008. Symposium on, 2008, pp. 311-313: IEEE. [48] K. C. Kao, Dielectric Phenomena in Solids. Elsevier Science, 2004. [49] M. Wegener and S. Bauer, 'Microstorms in cellular polymers: a route to soft piezoelectric transducer materials with engineered macroscopic dipoles,' Chemphyschem, vol. 6, no. 6, pp. 1014-25, Jun 13 2005. [50] H. Khanbareh, 'Expanding the Functionality of Piezo-Particulate Composites,' PhD Thesis, Master of Science in Aerospace Engineering, Delft University of Technology, 2016. [51] F. Carpi, Electromechanically Active Polymers: A Concise Reference. Springer International Publishing, 2016. [52] R. Gerhard-Multhaupt et al., 'Porous PTFE space-charge electrets for piezoelectric applications,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 4, pp. 480-488, 2000. [53] R. Gerhard-Multhaupt, Electrets. Laplacian Press, 1999. [54] The Editors of Encyclopaedia Britannica. (2014). Band theory. Available: https://www.britannica.com/science/band-theory [55] M. S. Silberberg, Principles of general chemistry. McGraw-Hill Higher Education, 2007. [56] Y.-C. Yan, 'Site Preference Study on New Quaternary Selenides AgSnM3Se6(M = Sb, Bi) and Cu0.9Sn1.2Sb4.9Se9,' Master Thesis, Department of Applied Chemistry, National Chiao Tung University 2007. [57] A. Thyssen, 'Charge distribution and stability in electret materials.,' PhD Thesis, Department of Micro- and Nanotechnology, Technical University of Denmark, 2016. [58] H. S. Nalwa, Ferroelectric polymers: chemistry: physics, and applications. CRC Press, 1995. [59] P. Martins, A. C. Lopes, and S. Lanceros-Mendez, 'Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications,' Progress in Polymer Science, vol. 39, no. 4, pp. 683-706, 2014. [60] H. Yan, L. Yayan, and Y. Yifei, 'Simultaneous stretching and static electric field poling of poly(vinylidene fluoride-hexafluoropropylene) copolymer films,' Polymer Engineering & Science, vol. 47, no. 10, pp. 1630-1633, 2007. [61] A. Salimi and A. A. Yousefi, 'Analysis Method: FTIR studies of β-phase crystal formation in stretched PVDF films,' Polymer Testing, vol. 22, no. 6, pp. 699-704, 2003/09/01/ 2003. [62] Q. Li and Q. Wang, 'Ferroelectric Polymers and Their Energy-Related Applications,' Macromolecular Chemistry and Physics, vol. 217, no. 11, pp. 1228-1244, 2016. [63] T. Furukawa, 'Ferroelectric properties of vinylidene fluoride copolymers,' Phase Transitions, vol. 18, no. 3-4, pp. 143-211, 1989. [64] Y. Xu, Ferroelectric Materials and Their Applications. Elsevier Science, 2013. [65] J. Zheng, A. He, J. Li, and C. C. Han, 'Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning,' Macromolecular Rapid Communications, vol. 28, no. 22, pp. 2159-2162, 2007. [66] E. Fukada, 'History and recent progress in piezoelectric polymers,' IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, no. 6, pp. 1277-1290, 2000. [67] M. Galikhanov, R. Y. Deberdeev, and E. Mochalova, 'Investigating the electret properties of polystyrene and graphite composites,' International Polymer Science and Technology, vol. 44, no. 1, p. T49, 2017. [68] Y. Deng, Q. Cao, Z. He, B. Jing, X. Wang, and X. Peng, 'A novel high-performance electrospun Thermoplastic polyurethane/Poly(vinylidene fluoride)/Polystyrene gel polymer electrolyte for lithium batteries,' Acta Chimica Slovenica, pp. 95-101, 2017. [69] R. Singh and S. Datt, 'Thermally stimulated current and charge decay studies in polystyrene thin films,' in Electrets (ISE 5), 1985 5th International Symposium on, 1985, pp. 191-195: IEEE. [70] A. Haider, S. Haider, and I.-K. Kang, 'A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology,' Arabian Journal of Chemistry, 2015. [71] Y. Shin, M. Hohman, M. Brenner, and G. Rutledge, 'Experimental characterization of electrospinning: the electrically forced jet and instabilities,' Polymer, vol. 42, no. 25, pp. 09955-09967, 2001. [72] M. M. Hohman, M. Shin, G. Rutledge, and M. P. Brenner, 'Electrospinning and electrically forced jets. I. Stability theory,' Physics of Fluids, vol. 13, no. 8, pp. 2201-2220, 2001. [73] R. Hartman, D. Brunner, D. Camelot, J. Marijnissen, and B. Scarlett, 'Jet break-up in electrohydrodynamic atomization in the cone-jet mode,' Journal of Aerosol Science, vol. 31, no. 1, pp. 65-95, 2000. [74] S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, 'Controlling the fiber diameter during electrospinning,' Phys Rev Lett, vol. 90, no. 14, p. 144502, Apr 11 2003. [75] Z. Li and C. Wang, One-dimensional nanostructures: electrospinning technique and unique nanofibers. Springer, 2013. [76] D. Rodoplu and M. Mutlu, 'Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces,' Journal of Engineered Fibers and Fabrics, vol. 7, no. 2, pp. 118-123, 2012. [77] R. M. Nezarati, M. B. Eifert, and E. Cosgriff-Hernandez, 'Effects of humidity and solution viscosity on electrospun fiber morphology,' Tissue Eng Part C Methods, vol. 19, no. 10, pp. 810-9, Oct 2013. [78] J. Chen and J. H. Davidson, 'Model of the negative DC corona plasma: comparison to the positive DC corona plasma,' Plasma chemistry and plasma processing, vol. 23, no. 1, pp. 83-102, 2003. [79] H.-C. Liao, 'Enhancing Low-Frequency Response of the Electret Loudspeaker by Flexible Structure Plate Design and Analysis,' Master Thesis, Department of Engineering Science and Ocean Engineering, National Tawan University, 2012. [80] A. D. Company, 'SV-10 Sine ave Vibro Viscometer Instruction Manual.' [81] J. Drelich, C. Fang, and C. White, 'Measurement of interfacial tension in fluid-fluid systems,' Encyclopedia of surface and colloid science, vol. 3, pp. 3158-3163, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72095 | - |
| dc.description.abstract | 本論文以靜電紡絲聚(偏氟乙烯-三氟乙烯)(Polyvinylidene fluoride-trifluoroethylene, P(VDF-TrFE))纖維及其與聚苯乙烯(Polystyrene, PS)纖維複合的濾材應用於氣膠過濾為主軸。P(VDF-TrFE)具有高可撓性、高化學抗性、高熱穩定性及高極性晶體結構的性質,靜電紡絲纖維則有高表面體積比的特性,對於過濾材來說,可以提升濾材的過濾穩定性及過濾效率。
本研究先以靜電紡絲不同的溶劑組成、溶液供給速率、P(VDF-TrFE)濃度、於溶液中添加表面活性劑控制表面張力,探討溶液特性對纖維結構的影響,並以掃描式電子顯微鏡觀測其纖維結構,佐以量測其溶液性質變化,探討影響靜電紡絲P(VDF-TrFE)纖維表面形貌的因素,以此製備出奈米尺度約180 nm的P(VDF-TrFE)纖維。 過濾量測使用以氯化鈉微粒為測試材料的穿透率量測系統,量測P(VDF-TrFE)在不同線徑組成下的纖維過濾效率,其中以所量測濾材中纖維線徑183 nm纖維過濾效率最為傑出,再以此纖維探討不同靜電紡絲收集時間下製備的纖維過濾效率,發現過濾膜品質隨著收集時間增加而下降。為了進一步提升P(VDF-TrFE)纖維的過濾效能,以雙針靜電紡絲的方式將P(VDF-TrFE)纖維與PS粗纖維複合,利用PS纖維使P(VDF-TrFE)纖維間距增加以降低壓損,並經由電暈放電的方式駐電,使複合濾材具有較佳的帶電性,以不增加壓損的前提下,提升P(VDF-TrFE)/PS濾材的過濾效能,使其在壓損39.55 Pa有92.17 %的過濾效率,對於低耗能需求的過濾系統中,有其應用的潛力。 | zh_TW |
| dc.description.abstract | The main goal of this thesis is to apply a fiber composite composed of electrospun poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) fibers and P(VDF-TrFE)/polystyrene (PS) fibers to aerosol filtration. The advantages of P(VDF-TrFE) are its high flexibility, good chemical resistance, high thermal stability and polarization capability. Electrospun P(VDF-TrFE) fibers with characteristics of P(VDF-TrFE) polymer and high surface-to-volume ratio may enhance the stability and efficiency of the filtration.
A series of studies are conducted to study the structure of the electrospun P(VDF-TrFE) fiber filters fabricated with different processing parameters, including solvent composition, solution feeding rate, P(VDF-TrFE) concentration, and addition of surfactant. The electrospun P(VDF-TrFE) nanofibers are developed with fiber diameter ranging from 780 nm to 180 nm. The filtration efficiency of P(VDF-TrFE) filter under different fiber diameter is quantified by challenging with sodium chloride particles. Among the measured filters of different fiber diameters, the finest fiber diameter of 183 nm has the best filtration performance. The P(VDF-TrFE) filters fabricated by different electrospinning collection time are also studied and compared. It is found that the quality factor decreased along with a longer collection time. In order to further improve the filtration efficiency of P(VDF-TrFE) filter, a P(VDF-TrFE)/PS composite filter is fabricated by a well-developed double-needle electrospinning method. P(VDF-TrFE)/PS composite filter has 92.17% filtration efficiency and 39.55 Pa pressure drop after corona charge treatment. Finally, the air filter developed in this thesis potentially can be applied for low energy consumption filtration system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:23:06Z (GMT). No. of bitstreams: 1 ntu-107-R05543038-1.pdf: 9665936 bytes, checksum: 08956dce602373de3ecdba0ea90750f2 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 x Chapter 1 緒論 1 1.1 研究背景及動機 1 1.2 文獻回顧 3 1.2.1 纖維過濾 3 1.2.2 靜電紡絲及其製備纖維在懸浮微粒過濾之應用 9 1.3 論文架構 13 Chapter 2 高分子駐極體材料 14 2.1 駐極體 14 2.1.1 駐極體材料研究背景 14 2.1.2 駐極體分類 16 2.1.3 電荷於駐極體中的行為 18 2.2 聚合物駐極體材料 20 2.2.1 聚偏氟乙烯及其共聚物 20 2.2.2 聚苯乙烯 23 Chapter 3 研究方法及實驗架設 24 3.1 靜電紡絲 24 3.1.1 原理 24 3.1.2 靜電紡絲製程參數 26 3.1.3 靜電紡絲纖維製程 28 3.2 電暈放電 30 3.2.1 原理 30 3.2.2 實驗架設 31 3.3 溶液性質量測 32 3.3.1 黏度計 32 3.3.2 表面張力計 32 3.3.3 導電度計 33 3.4 過濾效能量測 34 3.4.1 濾材氣膠穿透率量測 34 3.4.2 濾材壓損量測 36 3.4.3 過濾膜品質QF 37 Chapter 4 靜電紡絲纖維影響因素 38 4.1 溶劑比例 39 4.2 溶液供給速率 41 4.3 表面活性劑 43 4.4 聚合物濃度 45 Chapter 5 纖維濾材過濾效能 48 5.1 P(VDF-TrFE)纖維 48 5.1.1 纖維直徑影響 48 5.1.2 靜電紡絲收集時間影響 51 5.2 P(VDF-TrFE)/PS複合纖維 53 5.2.1 靜電紡絲參數 53 5.2.2 P(VDF-TrFE)纖維、PS纖維與P(VDF-TrFE)/PS複合纖維 56 5.2.3 駐電效果 58 5.2.4 P(VDF-TrFE)/PS分別電紡不同時間之複合濾材及其駐電效果 59 5.3 P(VDF-TrFE)、P(VDF-TrFE)/PS濾材過濾負載量測 63 5.4 市售濾材與靜電紡絲濾材 65 Chapter 6 結論與未來展望 68 6.1 結論 68 6.2 未來展望 68 參考文獻 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 聚(偏氟乙烯-三氟乙烯) | zh_TW |
| dc.subject | 奈米纖維 | zh_TW |
| dc.subject | 複合纖維 | zh_TW |
| dc.subject | 駐極體濾材 | zh_TW |
| dc.subject | electrospinning | en |
| dc.subject | P(VDF-TrFE) | en |
| dc.subject | nanofiber | en |
| dc.subject | composite fibrous filter | en |
| dc.subject | electret filter | en |
| dc.title | 用於氣溶膠過濾的聚(偏氟乙烯–三氟乙烯)靜電紡絲之奈米纖維濾材研發 | zh_TW |
| dc.title | Development of P(VDF-TrFE) Electrospun Nanofibers for Aerosol Filtration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 吳光鐘,許聿翔 | |
| dc.contributor.oralexamcommittee | 廖英志,黃盛修 | |
| dc.subject.keyword | 靜電紡絲,聚(偏氟乙烯-三氟乙烯),奈米纖維,複合纖維,駐極體濾材, | zh_TW |
| dc.subject.keyword | electrospinning,P(VDF-TrFE),nanofiber,composite fibrous filter,electret filter, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201803935 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 9.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
