Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72086
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorTzu-Hsuan Wuen
dc.contributor.author吳姿萱zh_TW
dc.date.accessioned2021-06-17T06:22:39Z-
dc.date.available2018-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-17
dc.identifier.citation1. Screen, H.R., et al., Tendon functional extracellular matrix. J Orthop Res, 2015. 33(6): p. 793-9.
2. Marco Franchi, M.F., Marilisa Quaranta, Viviana De Pasquale, Mario Raspanti, Gianluca Giavaresi, Vittoria Ottani and Alessandro Ruggeri, Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. (2007) 210, pp1– 7, 2006.
3. Fratzl, P., et al., Fibrillar structure and mechanical properties of collagen. J Struct Biol, 1998. 122(1-2): p. 119-22.
4. Thomas Gutsmann, G.E.F., Johannes H. Kindt, Manuela Venturoni, Signe Danielsen, and Paul K. Hansma, Force Spectroscopy of Collagen Fibers to Investigate Their Mechanical Properties and Structural Organization. Biophysical Journal, 2004. 86: p. 3186–3193.
5. Fung, Y.C.B., Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1981: p. 222.
6. Kennedy, J.C., Hawkins. R.J., Willis, R.B.,et al., Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate ant tibial colateral ligaments. J Bone Joint Surg, 1976: p. 58A, 350.
7. LaCroix, A.S., et al., Relationship between tendon stiffness and failure: a metaanalysis. Journal of Applied Physiology, 2013. 115(1): p. 43-51.
8. Wang, J.H., M.I. Iosifidis, and F.H. Fu, Biomechanical basis for tendinopathy. Clinical Orthopaedics and Related Research (1976-2007), 2006. 443: p. 320-332.
9. Pioletti, D.P., et al., Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. Journal of biomechanics, 1998. 31(8): p. 753-757.
10. Fung, Y., Elasticity of soft tissues in simple elongation. American Journal of Physiology-Legacy Content, 1967. 213(6): p. 1532-1544.
11. Johnson, G.A., et al., Tensile and viscoelastic properties of human patellar tendon. Journal of Orthopaedic Research, 1994. 12(6): p. 796-803.
12. Nekouzadeh, A., et al., A simplified approach to quasi-linear viscoelastic modeling. Journal of biomechanics, 2007. 40(14): p. 3070-3078.
13. Puxkandl, R., et al., Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2002. 357(1418): p. 191-197.
14. Machiraju, C., et al., Viscoelastic studies of human subscapularis tendon: relaxation test and a Wiechert model. Computer methods and programs in biomedicine, 2006. 83(1): p. 29-33.
15. Ciarletta, P. and M.B. Amar, A finite dissipative theory of temporary interfibrillar bridges in the extracellular matrix of ligaments and tendons. Journal of The Royal Society Interface, 2008: p. rsif. 2008.0487.
16. Hurschler, C., B. Loitz-Ramage, and J.R. Vanderby, A Structurally Based Stress-Stretch Relationship for Tendon and Ligament. Journal of Biomechanical Engineering, 1997. 119(4): p. 392-399.
17. Sverdlik, A. and Y. Lanir, Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. Journal of biomechanical engineering, 2002. 124(1): p. 78-84.
18. Sopakayang, R. and R. De Vita, A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues. Medical Engineering and Physics, 2011. 33(9): p. 1056-1063.
19. Layton, B.E. and A.M. Sastry, Equal and local-load-sharing micromechanical models for collagens: Quantitative comparisons in response of non-diabetic and diabetic rat tissue. Acta Biomaterialia, 2006. 2(6): p. 595-607.
20. Szczesny, S.E., et al., Biaxial tensile testing and constitutive modeling of human supraspinatus tendon. Journal of biomechanical engineering, 2012. 134(2): p. 021004.
21. Yoon, J.H. and J. Halper, Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact, 2005. 5(1): p. 22-34.
22. Sharon, N., IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycoproteins, glycopeptides and peptidoglycans. Recommendations 1985. Eur J Biochem, 1986. 159(1): p. 1-6.
23. Redaelli, A., et al., Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons--a computational study from molecular to microstructural level. J Biomech, 2003. 36(10): p. 1555-69.
24. Fessel, G. and J.G. Snedeker, Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon. Matrix Biol, 2009. 28(8): p. 503-10.
25. Fessel, G. and J.G. Snedeker, Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments. J Theor Biol, 2011. 268(1): p. 77-83.
26. Svensson, R.B., et al., Tensile Force Transmission in Human Patellar Tendon Fascicles Is Not Mediated by Glycosaminoglycans. Connective Tissue Research, 2011. 52(5): p. 415-421.
27. Legerlotz, K., G.P. Riley, and H.R.C. Screen, GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery. Acta Biomaterialia, 2013. 9(6): p. 6860-6866.
28. Robinson, P., et al., Strain-Rate Sensitive Mechanical Properties of Tendon Fascicles From Mice With Genetically Engineered Alterations in Collagen and Decorin. Journal of Biomechanical Engineering, 2004. 126(2): p. 252.
29. Screen, H.R.C., et al., Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles. Biochemical and Biophysical Research Communications, 2005. 336(2): p. 424-429.
30. Rigozzi, S., et al., Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding—AFM observations at the nanoscale. Journal of Biomechanics. 46(4): p. 813-818.
31. Wood, M.L., et al., Tendon Creep Is Potentiated by NKISK and Relaxin Which Produce Collagen Fiber Sliding. The Iowa Orthopaedic Journal, 2003. 23: p. 75-79.
32. Esther Robert, J., et al., Effect of NKISK on tendon lengthening: An in vivo model for various clinically applicable dosing regimens. Journal of Orthopaedic Research, 2008. 26(7): p. 971-976.
33. Rowe, R.W.D., The Structure of Rat Tail Tendon. Connective Tissue Research, 1985. 14(1): p. 9-20.
34. Bruneau, A., et al., Preparation of rat tail tendons for biomechanical and mechanobiological studies. J Vis Exp, 2010(41).
35. Watson, T., Therapeutic Ultrasound. 2015.
36. O’Brien, W.D., Ultrasound–biophysics mechanisms. Progress in Biophysics and Molecular Biology, 2007. 93(1): p. 212-255.
37. Nyborg, W.L., Ultrasonic microstreaming and related phenomena. The British Journal of Cancer. Supplement, 1982. 5: p. 156-160.
38. Wu, J., Shear stress in cells generated by ultrasound. Progress in Biophysics and Molecular Biology, 2007. 93(1): p. 363-373.
39. Dunn, F. and F.J. Fry, Ultrasonic Threshold Dosages for the Mammalian Central Nervous System. IEEE Transactions on Biomedical Engineering, 1971. BME-18(4): p. 253-256.
40. Apfel, R.E. and C.K. Holland, Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound in Medicine & Biology, 1991. 17(2): p. 179-185.
41. Church, C.C., Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound in Medicine and Biology, 2002. 28(10): p. 1349-1364.
42. Johns, L.D., Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train, 2002. 37(3): p. 293-9.
43. Rajan, N., et al., Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc, 2006. 1(6): p. 2753-8.
44. https://en.wikipedia.org/wiki/Standard_linear_solid_model.
45. Screen, H.R., et al., The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta biomaterialia, 2006. 2(5): p. 505-513.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72086-
dc.description.abstract目的: 研究大鼠尾巴肌腱束在超音波刺激下的黏彈性質變化。
背景簡介: 肌腱的主要功能為連結肌肉組織與骨頭,並且幫助傳遞力量。鼠尾肌腱為一分級式結構,可粗分為纖維束、纖維以及微纖維。超音波刺激對生物組織的影響可分為兩種-熱效應以及非熱效應。熱效應之物理原理為因振動而產生熱能,已被廣泛應用於物理治療,而非熱效應之物理原理,一般認為包含了空穴效應、微流效應及頻率共振,臨床上常用來作為生物刺激、藥物釋放等之能量來源。除了熱效應以外,超音波對生物組織的黏彈性質影響尚未看到太多的研究,因此本研究擬針對超音波的非熱效應對肌腱組織之黏彈性質加以探討。
材料與方法: (一) 大鼠尾巴肌腱束製備: 本研究使用年齡三到十二月大之SD品系大鼠。大鼠在犧牲後即將鼠尾切下,小心地劃開大鼠尾巴表皮與破壞尾椎體後,將肌腱束由鼠尾末端抽出。每條肌腱束被切割為每四公分一段的試樣。每段試樣階透過倒立式光學顯微鏡拍攝並量測其截面積。(二) 超音波系統架置:超音波系統由輸入端至輸出端,依序由波型產生器、功率放大器、電功率計及其感測器、匹配電路及超音波探頭組成。超音波輸出強度由聲功率計及水聽計量測而得,在本實驗中其強度為 0.5 W/cm^2(ISPTA),頻率為3 MHz。(三) 力學測試:我們分別做了五種實驗,分別是靜態拉伸破壞測試,靜態鬆弛測試與靜態潛變測試,以及動態鬆弛測試與動態潛變測試。分別了解在這五種測試環境時,超音波刺激對鼠尾纖維束的強度以及黏彈性質的影響。(四)分析方法:我們使用標準線性固體模型之麥克斯威爾模型與凱文模型分別擬合動態靜態之鬆弛與潛變測試,得到各模型與測試時的楊式係數(E_1、E_2)、黏滯係數(η)和時間常數(τ)。
結果: (一) 靜態拉伸破壞測試:超音波刺激組的極限拉伸應力(49.9(27.4) MPa vs. 38.7(20.0) MPa, p=0.15)及線性模數(564(275) MPa vs. 460(153) MPa, p=0.15)較控制組大。(二) 靜態鬆弛測試:超音波刺激組與控制組在應力鬆弛百分比、模型分析係數部分皆無顯著差異。(三) 靜態潛變測試:超音波刺激組之應變增加量顯著小於控制組(3.0(0.8)% vs. 6.7(1.5)%, p<0.05),麥克斯威爾模型中係數E_1顯著大於控制組(99.2(13.6) vs. 51.3(9.7) MPa, p<0.05);凱文模型中係數E_1(137.1(11.6) MPa vs. 95.3(9.1) MPa, p<0.05)、E_2(561.8(149.6) MPA vs. 218.8(81.5) MPa, p<0.05)及η(212.1(68.4) GPa.s vs. 65(9.5) GPa.s, p<0.05)皆顯著大於控制組。(四) 動態鬆弛測試:動態鬆弛1,000循環後之破壞測試,控制組與超音波刺激組之結果並無顯著差異。針對前100循環變化較大之波峰資料點進行曲線分析,發現超音波刺激組之應力鬆弛百分比顯著低於控制組(25.9(7.2%) vs. 37.9(20.2)%, p<0.05)。麥克斯威爾模型中係數E_2顯著低於控制組(65.9(11.5) MPa vs. 112.7(19.6) MPa, p<0.05),時間常數則顯著高於控制組(30.1(2.6) sec vs. 23.7(1.6) sec, p<0.05);凱文模型中E_2及η具有大於,時間常數則具有小於控制組之趨勢。在結構模型中,超音波組之多醣基質彈性與黏性係數顯著低於控制組,時間常數顯著高於控制組。(五) 動態潛變測試:循環潛變1,000循環後之破壞測試顯示,控制組與超音波刺激組對強度並無顯著差異。針對1,000循環之波峰資料點進行曲線分析,發現超音波刺激組之潛變量顯著低於控制組(0.46(0.15)% vs. 0.35(0.20)%, p<0.05)。麥克斯威爾模型及凱文模型中,各項係數皆具大於控制組之趨勢,但未達到顯著程度。
結論: 超音波刺激造成大鼠尾巴肌腱束黏彈性質變化,黏彈性質的變化造成應力鬆弛量及潛變量的降低。由多種不同模型分析可發現,超音波刺激在動態環境中的影響較靜態顯著。超音波刺激對於靜態鬆弛中的肌腱之影響較小。而在潛變測試中,不論靜態或動態及現象模型,超音波刺激皆有使彈性係數及黏滯度增加的效果。可見超音波刺激對於運動中肌腱之影響較大,並且對於行潛變運動的肌腱影響最為顯著,而對於行靜態鬆弛的肌腱影響較小。
zh_TW
dc.description.abstractObjective: To investigate the effect of rat-tail tendon’s viscoelastic properties under ultrasound stimulation.
Summary of background data: The biomechanical function of the tendon is to connect and deliver the force between muscle and bone. Rat-tail tendon is a hierarchical structure that can be classified as fascicle, fiber and fibril. The mechanical effect of ultrasound on soft tissue includes the thermal effect and non-thermal effect. The thermal effects is induced by the vibration within the living tissue, and this effect has been widely used in physiotherapy. The non-thermal effects of ultrasound includes cavitation, microstreaming and frequency resonance hypothesis, and can be used for tissue stimulation or drug release. In this study, we investigate the non-thermal effect of ultrasound on the viscoelastic properties of tendon fascicle.
Methods: (1) Preparation of rat-tail tendon fascicles: Three to twelve months old SD rats were used in this study. After sacrificed, the rat tail was cut off, and the skin of the tail was peeled off. The tendon fascicles were carefully pulled out from the distal end of tail, and cut into 4 cm in length for testing. The cross sectional area of all samples were measured by inverted microscope. (2) Ultrasound system: The ultrasound system includes function generator, radio frequency amplifier, radio frequency power meter and its sensor, impedance matching circuit and ultrasound probe. The intensity of ultrasound field was measured by ultrasound acoustic power meter and hydrophone. In this study, ultrasound intensity was 0.5 W/cm^2 (ISPTA) and frequency was 3 MHz. (3) Mechanical testing protocol: The testing protocol includes 1. Ramp-to-failure test, 2. static relaxation test, 3. static creep test, 4. dynamic relaxation test, and 5. dynamic creep test. The effects of ultrasound on the stiffness and viscoelastic properties of tendon fascicles during these test were studied. (4) Method of analysis: standard linear solid models in Maxwell and Kelvin representation were used to find the tendon fascicles’ viscoelastic parameters, which includes Young’s modulus (E_1, E_2), viscosity (η) and time constant (τ) during static and dynamic relaxation and creep tests.
Results: (1) Ramp-to-failure test: Experimental group has higher ultimate tensile strength (49.9(27.4) MPa vs. 38.7(20.0) MPa, p=0.15) and linear modulus (564(275) MPa vs. 460(153) MPa, p=0.15) than control group. (2) Static relaxation test: There is no significant difference between experimental group and control group in stress relaxation or viscoelastic properties. (3) Static creep test: Experimental group has significant lower amount of strain increase than control group (3.0(0.8) % vs. 6.7(1.5) %, p<0.05). In Maxwell representation model, experimental group has significant higher E_1 (99.2(13.6) vs. 51.3(9.7) MPa, p<0.05) than control group;In Kelvin representation model, experimental group has significant higher E_1 (137.1(11.6) MPa vs. 95.3(9.1) MPa, p<0.05), E_2 (561.8(149.6) MPA vs. 218.8(81.5) MPa, p<0.05) and η (212.1(68.4) GPa.s vs. 65(9.5) GPa.s, p<0.05) than control group. (4) Dynamic relaxation test: In ramp-to-failure test after cyclic loading, there is no significant difference between control group and experimental group in either failure stress or failure strain. The analysis of first 100 cycles showed the experimental group has significant lower amount of stress relaxation than control group (25.9(7.2) % vs. 37.9(20.2) %, p<0.05). In Maxwell representation model, experimental group has significant lower E_2 (65.9(11.5) MPa vs. 112.7(19.6) MPa, p<0.05) and significant higher time constant τ (30.1(2.6) sec vs. 23.7(1.6) sec, p<0.05) than control group;In Kelvin representation model, experimental group has higher tendency of E_2、η and time constant τ. In microstructural model, ultrasound stimulation group has significant lower elastic modulus and viscous modulus of proteoglycan matrix and significant higher time constant than control group. (5) Dynamic creep test: In the ramp-to-failure test after cyclic loading, there is no significant difference between control group and experimental group in either failure stress or failure strain. The analysis of 1,000 cycles showed experimental group has significant lower amount of strain increase than control group (0.46(0.15) % vs. 0.35(0.20) %, p<0.05). In Maxwell and Kelvin model, experimental group has higher tendency of all parameters than control group.
Conclusion: Ultrasound stimulation changes the viscoelastic behavior of tendon fascicles. The change of viscoelastic properties reduced the relaxed stress and creep strain. The fitted models showed the effect of ultrasound is more prominent during dynamic tests than during the static tests. The effect of ultrasound on static relaxation test was minimal. During the creep test, elastic modulus and viscosity increase in static and dynamic loading condition increased, whereas the phenomenological model also showed similar effect. The results of this study may imply that the ultrasound affects the tendon’s properties during dynamic motion or exercise, especially for the dynamic creep motion, whereas the affect is minimal during static relaxation motion.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:22:39Z (GMT). No. of bitstreams: 1
ntu-107-R05548012-1.pdf: 2840405 bytes, checksum: 7d0c3e4eb9f5a122407c0b3904de8b80 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 II
中文摘要 IV
Abstract VII
圖目錄 XIII
表目錄 XVI
第一章 緒論 1
1.1 肌腱之構造與微結構組成 1
1.2 肌腱之力學研究 2
1.2.1 人體肌腱生物力學 3
1.3 肌腱模型模擬 5
1.4 非膠原蛋白基質與肌腱束機械性質之關係 6
1.5 大鼠尾巴肌腱 7
1.6 醫療用超音波簡介 8
1.6.1 超音波生物物理 10
1.6.2 超音波熱效應與非熱效應 13
1.6.3 超音波在醫療上的應用 17
1.7 實驗目的與假說 17
第二章 材料與方法 18
2.1 研究方法介紹 18
2.2 實驗程序 18
2.3 實驗儀器 20
2.3.1 拉伸測試機台(Bose-Electroforce 5500) 20
2.3.2 電功率放大器(E&I 210L) 21
2.3.3 電功率計(Bird 4421)與感測器(Bird 4025) 21
2.3.4 波型產生器(Tektronix AFG 1000) 22
2.3.5 超音波聲功率計(Ohmic UPM-DT-1PA) 22
2.3.6 水聽計(Onda HNC-1000) 23
2.3.7 超音波發射接收器(Olympus 5072PR) 24
2.3.8 超音波探頭 25
2.4 實驗流程 26
2.4.1 試樣準備 26
2.4.2 鼠尾肌腱抽取 26
2.4.3 鼠尾肌腱束截面積量測 27
2.4.4 超音波環境架設 28
2.4.5 力學測試 33
2.5 資料分析 35
2.6 模型模擬分析 36
2.6.1 標準線性固體模型(Standard Linear Solid Model) 36
2.6.2 肌腱纖維束結構模型 38
第三章 實驗結果 42
3.1 材料測試實驗 42
3.1.1 超音波刺激能量 42
3.1.2 截面積量測結果 42
3.1.3 靜態破壞測試結果 42
3.1.4 靜態鬆弛測試結果 44
3.1.5 靜態潛變測試結果 50
3.2 循環負載測試 53
3.2.1 超音波刺激能量 53
3.2.2 截面積量測結果 53
3.2.3 動態鬆弛測試結果 53
3.2.4 動態潛變測試結果 62
第四章 討論 69
4.1 超音波能量強度 69
4.2 鼠尾試樣 69
4.3 肌腱纖維束試樣截面積量測 70
4.4 實驗結果討論 70
4.4.1 材料測試實驗結果 70
4.4.2 現象模型(Phenomenological model)分析結果 71
4.4.3 總結討論 76
4.5 實驗限制 78
4.5.1 試樣製備與截面積量測 78
4.5.2 力學測試與夾治具 78
4.5.3 超音波刺激與震動 78
第五章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 79
參考文獻 80
dc.language.isozh-TW
dc.subject大鼠尾巴肌腱zh_TW
dc.subject肌腱纖維束zh_TW
dc.subject肌腱生物力學zh_TW
dc.subject超音波刺激zh_TW
dc.subject超音波治療zh_TW
dc.subjectRat-tail tendonen
dc.subjectTendon fasciclesen
dc.subjectTendon biomechanicsen
dc.subjectUltrasound stimulationen
dc.subjectUltrasound therapyen
dc.title超音波刺激對鼠尾肌腱纖維束黏彈性質之影響zh_TW
dc.titleEffects of Ultrasound Stimulation on Viscoelastic Properties of Rat Tail Tendon Fasciclesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林文澧(Win-Li Lin),劉浩澧(Hao-Li Liu)
dc.subject.keyword大鼠尾巴肌腱,肌腱纖維束,肌腱生物力學,超音波刺激,超音波治療,zh_TW
dc.subject.keywordRat-tail tendon,Tendon fascicles,Tendon biomechanics,Ultrasound stimulation,Ultrasound therapy,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201803549
dc.rights.note有償授權
dc.date.accepted2018-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved