請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7207完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇慧敏 | |
| dc.contributor.author | Yen-Jung Lu | en |
| dc.contributor.author | 呂彥蓉 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:40:13Z | - |
| dc.date.available | 2030-03-01 | |
| dc.date.available | 2021-05-19T17:40:13Z | - |
| dc.date.copyright | 2020-03-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-25 | |
| dc.identifier.citation | Agarwal AK, Garg A (2010) Enzymatic activity of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 11: upregulated in breast and cervical cancers. J Lipid Res 51:2143-2152.
Agbaga MP, Mandal MN, Anderson RE (2010) Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 51:1624-1642. Alizadeh A, Esmaeili V, Shahverdi A, Rashidi L (2014) Dietary Fish Oil Can Change Sperm Parameters and Fatty Acid Profiles of Ram Sperm during Oil Consumption Period and after Removal of Oil Source. Cell J 16:289-298. Am-in N, Kirkwood RN, Techakumphu M, Tantasuparuk W (2011) Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology 75:897-903. Ansari IH, Longacre MJ, Stoker SW, Kendrick MA, O'Neill LM, Zitur LJ, Fernandez LA, Ntambi JM, MacDonald MJ (2017) Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: Gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion. Arch Biochem Biophys 618:32-43. Barabas P, Liu A, Xing W, Chen CK, Tong Z, Watt CB, Jones BW, Bernstein PS, Krizaj D (2013) Role of ELOVL4 and very long-chain polyunsaturated fatty acids in mouse models of Stargardt type 3 retinal degeneration. Proc Natl Acad Sci U S A 110:5181-5186. Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:159-166. Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575-605. Bieri JG, Prival EL (1965) Lipid composition of testes from various species. Comp Biochem Physiol 15:275-282. Bjorkgren I, Gylling H, Turunen H, Huhtaniemi I, Strauss L, Poutanen M, Sipila P (2015) Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane. FASEB J 29:433-442. Bradley RM, Marvyn PM, Aristizabal Henao JJ, Mardian EB, George S, Aucoin MG, Stark KD, Duncan RE (2015) Acylglycerophosphate acyltransferase 4 (AGPAT4) is a mitochondrial lysophosphatidic acid acyltransferase that regulates brain phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol levels. Biochim Biophys Acta 1851:1566-1576. Bridges JP, Ikegami M, Brilli LL, Chen X, Mason RJ, Shannon JM (2010) LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice. J Clin Invest 120:1736-1748. Cao J, Shan D, Revett T, Li D, Wu L, Liu W, Tobin JF, Gimeno RE (2008) Molecular identification of a novel mammalian brain isoform of acyl-CoA:lysophospholipid acyltransferase with prominent ethanolamine lysophospholipid acylating activity, LPEAT2. J Biol Chem 283:19049-19057. Capel F, Acquaviva C, Pitois E, Laillet B, Rigaudiere JP, Jouve C, Pouyet C, Gladine C, Comte B, Vianey Saban C, Morio B (2015) DHA at nutritional doses restores insulin sensitivity in skeletal muscle by preventing lipotoxicity and inflammation. J Nutr Biochem 26:949-959. Carrillo C, Cavia Mdel M, Alonso-Torre SR (2012) Antitumor effect of oleic acid; mechanisms of action: a review. Nutr Hosp 27:1860-1865. Chen D, Chao DL, Rocha L, Kolar M, Nguyen Huu VA, Krawczyk M, Dasyani M, Wang T, Jafari M, Jabari M, Ross KD, Saghatelian A, Hamilton BA, Zhang K, Skowronska-Krawczyk D (2020) The lipid elongation enzyme ELOVL2 is a molecular regulator of aging in the retina. Aging Cell 19:e13100. Cheng L, Han X, Shi Y (2009) A regulatory role of LPCAT1 in the synthesis of inflammatory lipids, PAF and LPC, in the retina of diabetic mice. Am J Physiol Endocrinol Metab 297:E1276-1282. Coe NR, Bernlohr DA (1998) Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta 1391:287-306. Coe NR, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA (1999) The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem 274:36300-36304. Dai X, Han J, Qi Y, Zhang H, Xiang L, Lv J, Li J, Deng WT, Chang B, Hauswirth WW, Pang JJ (2014) AAV-mediated lysophosphatidylcholine acyltransferase 1 (Lpcat1) gene replacement therapy rescues retinal degeneration in rd11 mice. Invest Ophthalmol Vis Sci 55:1724-1734. Datar J, Regassa A, Kim WK, Taylor CG, Zahradka P, Suh M (2017) Lipid Metabolism is Closely Associated with Normal Testicular Growth Based on Global Transcriptome Profiles in Normal and Underdeveloped Testis of Obese Zucker (fa/fa) Rats. Lipids 52:951-960. Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, Hirsch D, Watson N, Gimeno RE, Stahl A (2006) Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis. Gastroenterology 130:1245-1258. Eto M, Shindou H, Shimizu T (2014) A novel lysophosphatidic acid acyltransferase enzyme (LPAAT4) with a possible role for incorporating docosahexaenoic acid into brain glycerophospholipids. Biochem Biophys Res Commun 443:718-724. Fernandez RF, Kim SQ, Zhao Y, Foguth RM, Weera MM, Counihan JL, Nomura DK, Chester JA, Cannon JR, Ellis JM (2018) Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc Natl Acad Sci U S A 115:12525-12530. Fields HL, Barbaro NM, Heinricher MM (1988) Brain stem neuronal circuitry underlying the antinociceptive action of opiates. Prog Brain Res 77:245-257. Fujita M, Fujii H, Kanda T, Sato E, Hatakeyama K, Ono T (1995) Molecular cloning, expression, and characterization of a human intestinal 15-kDa protein. Eur J Biochem 233:406-413. Furuhashi M, Saitoh S, Shimamoto K, Miura T (2014) Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases. Clin Med Insights Cardiol 8:23-33. Fuss J, Steinle J, Bindila L, Auer MK, Kirchherr H, Lutz B, Gass P (2015) A runner's high depends on cannabinoid receptors in mice. Proc Natl Acad Sci U S A 112:13105-13108. Gagliese L, Melzack R (2000) Age differences in nociception and pain behaviours in the rat. Neurosci Biobehav Rev 24:843-854. Gerbi A, Maixent JM, Barbey O, Jamme I, Pierlovisi M, Coste T, Pieroni G, Nouvelot A, Vague P, Raccah D (1998) Alterations of Na,K-ATPase isoenzymes in the rat diabetic neuropathy: protective effect of dietary supplementation with n-3 fatty acids. J Neurochem 71:732-740. Giesler GJ, Jr., Liebeskind JC (1976) Inhibition of visceral pain by electrical stimulation of the periaqueductal gray matter. Pain 2:43-48. Gimeno RE (2007) Fatty acid transport proteins. Curr Opin Lipidol 18:271-276. Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK (2010) Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res 51:1871-1877. Grundy SM (1986) Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. N Engl J Med 314:745-748. Hall AM, Wiczer BM, Herrmann T, Stremmel W, Bernlohr DA (2005) Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 280:11948-11954. Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SM, Eto M, Tamura-Nakano M, Yanobu-Takanashi R, Mukumoto Y, Kiyonari H, Okamura T, Kita Y, Shindou H, Shimizu T (2015) Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. Elife 4. Herrmann T, van der Hoeven F, Grone HJ, Stewart AF, Langbein L, Kaiser I, Liebisch G, Gosch I, Buchkremer F, Drobnik W, Schmitz G, Stremmel W (2003) Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy. J Cell Biol 161:1105-1115. Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 11:175-180. Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26:331-343. Igal RA, Mandon EC, de Gomez Dumm IN (1991) Abnormal metabolism of polyunsaturated fatty acids in adrenal glands of diabetic rats. Mol Cell Endocrinol 77:217-227. Iizuka-Hishikawa Y, Hishikawa D, Sasaki J, Takubo K, Goto M, Nagata K, Nakanishi H, Shindou H, Okamura T, Ito C, Toshimori K, Sasaki T, Shimizu T (2017) Lysophosphatidic acid acyltransferase 3 tunes the membrane status of germ cells by incorporating docosahexaenoic acid during spermatogenesis. J Biol Chem 292:12065-12076. Killion EA, Reeves AR, El Azzouny MA, Yan QW, Surujon D, Griffin JD, Bowman TA, Wang C, Matthan NR, Klett EL, Kong D, Newman JW, Han X, Lee MJ, Coleman RA, Greenberg AS (2018) A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol Metab 9:43-56. Kim J, Carlson ME, Kuchel GA, Newman JW, Watkins BA (2016) Dietary DHA reduces downstream endocannabinoid and inflammatory gene expression and epididymal fat mass while improving aspects of glucose use in muscle in C57BL/6J mice. Int J Obes (Lond) 40:129-137. Kim OY, Lee SM, An WS (2018) Impact of Blood or Erythrocyte Membrane Fatty Acids for Disease Risk Prediction: Focusing on Cardiovascular Disease and Chronic Kidney Disease. Nutrients 10. Kitson AP, Stark KD, Duncan RE (2012) Enzymes in brain phospholipid docosahexaenoic acid accretion: a PL-ethora of potential PL-ayers. Prostaglandins Leukot Essent Fatty Acids 87:1-10. Krammer J, Digel M, Ehehalt F, Stremmel W, Fullekrug J, Ehehalt R (2011) Overexpression of CD36 and acyl-CoA synthetases FATP2, FATP4 and ACSL1 increases fatty acid uptake in human hepatoma cells. Int J Med Sci 8:599-614. Kris-Etherton PM, Pearson TA, Wan Y, Hargrove RL, Moriarty K, Fishell V, Etherton TD (1999) High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am J Clin Nutr 70:1009-1015. Kuehl FA, Jr., Egan RW (1980) Prostaglandins, arachidonic acid, and inflammation. Science 210:978-984. Kutkowska-Kazmierczak A et al. (2018) Dominant ELOVL1 mutation causes neurological disorder with ichthyotic keratoderma, spasticity, hypomyelination and dysmorphic features. J Med Genet 55:408-414. Landry F, Chan CC, Huang Z, Leclair G, Li CS, Oballa R, Zhang L, Bateman K (2011) Plasma-based approach to measure target engagement for liver-targeting stearoyl-CoA desaturase 1 inhibitors. J Lipid Res 52:1494-1499. Leonard AE, Kelder B, Bobik EG, Chuang LT, Parker-Barnes JM, Thurmond JM, Kroeger PE, Kopchick JJ, Huang YS, Mukerji P (2000) cDNA cloning and characterization of human Delta5-desaturase involved in the biosynthesis of arachidonic acid. Biochem J 347 Pt 3:719-724. Li LO, Mashek DG, An J, Doughman SD, Newgard CB, Coleman RA (2006) Overexpression of rat long chain acyl-coa synthetase 1 alters fatty acid metabolism in rat primary hepatocytes. J Biol Chem 281:37246-37255. Li LO, Ellis JM, Paich HA, Wang S, Gong N, Altshuller G, Thresher RJ, Koves TR, Watkins SM, Muoio DM, Cline GW, Shulman GI, Coleman RA (2009) Liver-specific loss of long chain acyl-CoA synthetase-1 decreases triacylglycerol synthesis and beta-oxidation and alters phospholipid fatty acid composition. J Biol Chem 284:27816-27826. Li Z, Jiang H, Ding T, Lou C, Bui HH, Kuo MS, Jiang XC (2015) Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology 149:1519-1529. Lim SY, Hoshiba J, Salem N, Jr. (2005) An extraordinary degree of structural specificity is required in neural phospholipids for optimal brain function: n-6 docosapentaenoic acid substitution for docosahexaenoic acid leads to a loss in spatial task performance. J Neurochem 95:848-857. Lo Van A, Sakayori N, Hachem M, Belkouch M, Picq M, Lagarde M, Osumi N, Bernoud-Hubac N (2016) Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases. Biochimie 130:163-167. Maloberti P, Cornejo Maciel F, Castillo AF, Castilla R, Duarte A, Toledo MF, Meuli F, Mele P, Paz C, Podesta EJ (2007) Enzymes involved in arachidonic acid release in adrenal and Leydig cells. Mol Cell Endocrinol 265-266:113-120. Mandon EC, de Gomez Dumm IN, de Alaniz MJ, Marra CA, Brenner RR (1987) ACTH depresses delta 6 and delta 5 desaturation activity in rat adrenal gland and liver. J Lipid Res 28:1377-1383. Marszalek JR, Kitidis C, Dirusso CC, Lodish HF (2005) Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J Biol Chem 280:10817-10826. Mashek DG, Li LO, Coleman RA (2006a) Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J Lipid Res 47:2004-2010. Mashek DG, McKenzie MA, Van Horn CG, Coleman RA (2006b) Rat long chain acyl-CoA synthetase 5 increases fatty acid uptake and partitioning to cellular triacylglycerol in McArdle-RH7777 cells. J Biol Chem 281:945-950. Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA, Black P, DiRusso CC, Farber SA, Guo W, Hashimoto N, Khodiyar V, Kuypers FA, Maltais LJ, Nebert DW, Renieri A, Schaffer JE, Stahl A, Watkins PA, Vasiliou V, Yamamoto TT (2004) Revised nomenclature for the mammalian long-chain acyl-CoA synthetase gene family. J Lipid Res 45:1958-1961. Matsumata M, Sakayori N, Maekawa M, Owada Y, Yoshikawa T, Osumi N (2012) The effects of Fabp7 and Fabp5 on postnatal hippocampal neurogenesis in the mouse. Stem Cells 30:1532-1543. Meller N, Morgan ME, Wong WP, Altemus JB, Sehayek E (2013) Targeting of Acyl-CoA synthetase 5 decreases jejunal fatty acid activation with no effect on dietary long-chain fatty acid absorption. Lipids Health Dis 12:88. Migita T, Takayama KI, Urano T, Obinata D, Ikeda K, Soga T, Takahashi S, Inoue S (2017) ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Sci 108:2011-2021. Mikami K, Omura M, Tamura Y, Yoshida S (1990) Possible site of action of 5-hydroperoxyeicosatetraenoic acid derived from arachidonic acid in ACTH-stimulated steroidogenesis in rat adrenal glands. J Endocrinol 125:89-96. Mitchell RW, Hatch GM (2011) Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot Essent Fatty Acids 85:293-302. Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM (2011) Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117:735-746. Mourvaki E, Cardinali R, Dal Bosco A, Corazzi L, Castellini C (2010) Effects of flaxseed dietary supplementation on sperm quality and on lipid composition of sperm subfractions and prostatic granules in rabbit. Theriogenology 73:629-637. Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, Mukasa C, Okabe T, Nomura M, Goto K, Nawata H (2001) Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142:3590-3597. Mueller N, Sassa T, Morales-Gonzalez S, Schneider J, Salchow DJ, Seelow D, Knierim E, Stenzel W, Kihara A, Schuelke M (2019) De novo mutation in ELOVL1 causes ichthyosis, acanthosis nigricans, hypomyelination, spastic paraplegia, high frequency deafness and optic atrophy. J Med Genet 56:164-175. Mukai T, Egawa M, Takeuchi T, Yamashita H, Kusudo T (2017) Silencing of FABP1 ameliorates hepatic steatosis, inflammation, and oxidative stress in mice with nonalcoholic fatty liver disease. FEBS Open Bio 7:1009-1016. Murayama K, Yoneya S, Miyauchi O, Adachi-Usami E, Nishikawa M (2002) Fish oil (polyunsaturated fatty acid) prevents ischemic-induced injury in the mammalian retina. Exp Eye Res 74:671-676. Murphy EJ, Owada Y, Kitanaka N, Kondo H, Glatz JF (2005) Brain arachidonic acid incorporation is decreased in heart fatty acid binding protein gene-ablated mice. Biochemistry 44:6350-6360. Naganuma T, Sato Y, Sassa T, Ohno Y, Kihara A (2011) Biochemical characterization of the very long-chain fatty acid elongase ELOVL7. FEBS Lett 585:3337-3341. Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, Taguchi R, Shimizu T (2006) Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem 281:20140-20147. Naudi A, Cabre R, Dominguez-Gonzalez M, Ayala V, Jove M, Mota-Martorell N, Pinol-Ripoll G, Gil-Villar MP, Rue M, Portero-Otin M, Ferrer I, Pamplona R (2017) Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system. Biochim Biophys Acta Mol Cell Biol Lipids 1862:485-495. Nelson JR, Wani O, May HT, Budoff M (2017) Potential benefits of eicosapentaenoic acid on atherosclerotic plaques. Vascul Pharmacol 91:1-9. Nishikawa T, Omura M, Noda M, Yoshida S (1994) Possible involvement of lipoxygenase metabolites of arachidonic acid in the regulation of pregnenolone synthesis in bovine adrenocortical mitochondria. J Biochem 116:833-837. Ochiai Y, Uchida Y, Ohtsuki S, Tachikawa M, Aizawa S, Terasaki T (2017) The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport. J Neurochem 141:400-412. Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashi Y, Sassa T, Kihara A (2010) ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc Natl Acad Sci U S A 107:18439-18444. Oko R, Morales CR (1994) A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca. Dev Biol 166:235-245. Paglialunga S, Dehn CA (2016) Clinical assessment of hepatic de novo lipogenesis in non-alcoholic fatty liver disease. Lipids Health Dis 15:159. Pan Y, Scanlon MJ, Owada Y, Yamamoto Y, Porter CJ, Nicolazzo JA (2015) Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid. Mol Pharm 12:4375-4385. Pauter AM, Olsson P, Asadi A, Herslof B, Csikasz RI, Zadravec D, Jacobsson A (2014) Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lipid Res 55:718-728. Peoples GE, McLennan PL (2014) Long-chain n-3 DHA reduces the extent of skeletal muscle fatigue in the rat in vivo hindlimb model. Br J Nutr 111:996-1003. Prasad SS, Garg A, Agarwal AK (2011) Enzymatic activities of the human AGPAT isoform 3 and isoform 5: localization of AGPAT5 to mitochondria. J Lipid Res 52:451-462. Prieto-Sanchez MT, Ruiz-Palacios M, Blanco-Carnero JE, Pagan A, Hellmuth C, Uhl O, Peissner W, Ruiz-Alcaraz AJ, Parrilla JJ, Koletzko B, Larque E (2017) Placental MFSD2a transporter is related to decreased DHA in cord blood of women with treated gestational diabetes. Clin Nutr 36:513-521. Rodemann HP, Goldberg AL (1982) Arachidonic acid, prostaglandin E2 and F2 alpha influence rates of protein turnover in skeletal and cardiac muscle. J Biol Chem 257:1632-1638. Rong X, Wang B, Dunham MM, Hedde PN, Wong JS, Gratton E, Young SG, Ford DA, Tontonoz P (2015) Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. Elife 4. Rotstein NP, Aveldano MI, Politi LE (1999) Essentiality of docosahexaenoic acid in retina photoreceptor cell development. Lipids 34 Suppl:S115. Ruiz-Nunez B, Dijck-Brouwer DA, Muskiet FA (2016) The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J Nutr Biochem 36:1-20. Sassa T, Ohno Y, Suzuki S, Nomura T, Nishioka C, Kashiwagi T, Hirayama T, Akiyama M, Taguchi R, Shimizu H, Itohara S, Kihara A (2013) Impaired epidermal permeability barrier in mice lacking elovl1, the gene responsible for very-long-chain fatty acid production. Mol Cell Biol 33:2787-2796. Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KS, Foster JA, Brenna JT, Weiss RS, Travis AJ (2010) Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol 348:177-189. Shin D, Shin JY, McManus MT, Ptacek LJ, Fu YH (2009) Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol 66:843-857. Shindou H, Hishikawa D, Harayama T, Yuki K, Shimizu T (2009) Recent progress on acyl CoA: lysophospholipid acyltransferase research. J Lipid Res 50 Suppl:S46-51. Shindou H, Koso H, Sasaki J, Nakanishi H, Sagara H, Nakagawa KM, Takahashi Y, Hishikawa D, Iizuka-Hishikawa Y, Tokumasu F, Noguchi H, Watanabe S, Sasaki T, Shimizu T (2017) Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells. J Biol Chem 292:12054-12064. Silver MJ, Smith JB, Ingerman C, Kocsis JJ (1973) Arachidonic acid-induced human platelet aggregation and prostaglandin formation. Prostaglandins 4:863-875. Singh M (2005) Essential fatty acids, DHA and human brain. Indian J Pediatr 72:239-242. Stark KD, Lim SY, Salem N, Jr. (2007) Artificial rearing with docosahexaenoic acid and n-6 docosapentaenoic acid alters rat tissue fatty acid composition. J Lipid Res 48:2471-2477. Storch J, Thumser AE (2010) Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem 285:32679-32683. Stuhlsatz-Krouper SM, Bennett NE, Schaffer JE (1998) Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J Biol Chem 273:28642-28650. Su HM (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21:364-373. Su HM, Moser AB, Moser HW, Watkins PA (2001) Peroxisomal straight-chain Acyl-CoA oxidase and D-bifunctional protein are essential for the retroconversion step in docosahexaenoic acid synthesis. J Biol Chem 276:38115-38120. Suh M, Merrells KJ, Dick A, Taylor CG (2011) Testes of obese rats are highly responsive to n-3 long-chain fatty acids. Br J Nutr 106:1005-1012. Tamura K, Makino A, Hullin-Matsuda F, Kobayashi T, Furihata M, Chung S, Ashida S, Miki T, Fujioka T, Shuin T, Nakamura Y, Nakagawa H (2009) Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res 69:8133-8140. Teres S, Barcelo-Coblijn G, Benet M, Alvarez R, Bressani R, Halver JE, Escriba PV (2008) Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci U S A 105:13811-13816. Trapp BD, Dubois-Dalcq M, Quarles RH (1984) Ultrastructural localization of P2 protein in actively myelinating rat Schwann cells. J Neurochem 43:944-948. van Kuijk FJ, Buck P (1992) Fatty acid composition of the human macula and peripheral retina. Invest Ophthalmol Vis Sci 33:3493-3496. Vassileva G, Huwyler L, Poirier K, Agellon LB, Toth MJ (2000) The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 14:2040-2046. Viguier F, Michot B, Hamon M, Bourgoin S (2013) Multiple roles of serotonin in pain control mechanisms--implications of 5-HT(7) and other 5-HT receptor types. Eur J Pharmacol 716:8-16. Wang QP, Nakai Y (1994) The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull 34:575-585. Wu T, Tian J, Cutler RG, Telljohann RS, Bernlohr DA, Mattson MP, Handa JT (2010) Knockdown of FABP5 mRNA decreases cellular cholesterol levels and results in decreased apoB100 secretion and triglyceride accumulation in ARPE-19 cells. Lab Invest 90:906-914. Wu X, Deng F, Li Y, Daniels G, Du X, Ren Q, Wang J, Wang LH, Yang Y, Zhang V, Zhang D, Ye F, Melamed J, Monaco ME, Lee P (2015) ACSL4 promotes prostate cancer growth, invasion and hormonal resistance. Oncotarget 6:44849-44863. Xu LZ, Sanchez R, Sali A, Heintz N (1996) Ligand specificity of brain lipid-binding protein. J Biol Chem 271:24711-24719. Yamagata K (2017) Docosahexaenoic acid regulates vascular endothelial cell function and prevents cardiovascular disease. Lipids Health Dis 16:118. Yamashita A, Hayashi Y, Matsumoto N, Nemoto-Sasaki Y, Oka S, Tanikawa T, Sugiura T (2014a) Glycerophosphate/Acylglycerophosphate acyltransferases. Biology (Basel) 3:801-830. Yamashita A, Hayashi Y, Nemoto-Sasaki Y, Ito M, Oka S, Tanikawa T, Waku K, Sugiura T (2014b) Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 53:18-81. Yan S, Yang XF, Liu HL, Fu N, Ouyang Y, Qing K (2015) Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol 21:3492-3498. Zadravec D, Tvrdik P, Guillou H, Haslam R, Kobayashi T, Napier JA, Capecchi MR, Jacobsson A (2011) ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice. J Lipid Res 52:245-255. Zhan T, Poppelreuther M, Ehehalt R, Fullekrug J (2012) Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS One 7:e45087. Zhang YF, Yuan KM, Liang Y, Chu YH, Lian QQ, Ge YF, Zhen W, Sottas CM, Su ZJ, Ge RS (2015) Alterations of gene profiles in Leydig-cell-regenerating adult rat testis after ethane dimethane sulfonate-treatment. Asian J Androl 17:253-260. 陳冠竹 (2019) 探討大鼠發育老化過程及人類細胞株中參與二十二碳六烯酸合成及嵌入細胞膜. 蔡惠如 (2018) 探討大鼠腦部發育老化過程對突觸可塑性基因、參與DHA合成及嵌入細胞膜磷脂質酵素表現之影響. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7207 | - |
| dc.description.abstract | 脂肪酸(fatty acids)是構成生物體磷脂膜(membrane phospholipids)的主要成分,會影響細胞膜的功能。長碳鏈脂肪酸可透過去飽和酶(FADSs)和延長碳鏈酵素(ELOVLs)經體內自行合成,在透過acyl-CoA synthetases(ACSLs)使長鏈脂肪酸活化接上CoA,並利用acyltransferases(AGPATs或LPCATs)將脂肪酸嵌入磷脂膜中。本論文欲透過相關性統計來探討60天大的大鼠組織和發育階段腦幹的參與合成相關的酵素和嵌入相關的蛋白質基因表現量,對於該組織的脂肪酸組成的影響。
本論文分析60天大的公鼠組織,以及0.5、7、14、21、28、60、210和360天大的公鼠大腦皮質和腦幹。利用氣相層析儀進行脂肪酸成分分析,與即時聚合酶鏈式反應分析參與合成相關之酵素和協助嵌入磷脂膜的蛋白質基因表現量,再利用Pearson correlation coefficient統計脂肪酸成份百分比與酵素基因表現量的相關性。以痛覺行為實驗分析21、28、60、210和360天大的公鼠其機械痛與熱痛敏感度的變化。 腦幹含有較高的非常長碳鏈飽和脂肪酸(20:0、22:0和24:0)與非常長碳鏈單元不飽和脂肪酸(20:1n-9、22:1n-9和24:1n-9)成分,18:2n-6主要富含在脂肪、血漿、肌肉和肝臟中,AA(20:4n-6)富含在腎上腺、腦垂體、肝臟和血漿中,DHA(22:5n-6)富含在視網膜、大腦皮質、海馬迴、下視丘、小腦和肌肉中。Fads2、Fads1、Elovl5 mRNA皆主要表現在肝臟和腎上腺,Elovl2 mRNA表現在視網膜和睪丸中,Elovl6 mRNA表現在腦部和腎上腺,Elovl1 mRNA表現在腦幹及肺臟中,Elovl7 mRNA表現在腦幹和腎上腺。參與活化以及嵌入磷脂膜相關的酵素mRNA表現量結果中,Acsl1 mRNA主要表現在肝臟和脂肪,Acsl3 mRNA和Acsl6 mRNA表現在腦部,Acsl4 mRNA表現在腎上腺,Acsl5 mRNA表現在肝臟和肺臟;Agpat4 mRNA、Agpat5 mRNA和Lpcat4 mRNA皆表現在腦部,Lpcat1 mRNA和Lpcat2 mRNA皆表現在視網膜,Lpcat3 mRNA主要表現在腎上腺和睪丸。組織中的DHA含量分別與Elovl2, Acsl3, Acsl6, Lpcat1, Lpcat2, Lpcat3, Agpat4和Agpat5 mRNA表現量皆有正相關性,而組織中的非常長鏈飽和與單元不飽和脂肪酸分別與Elovl1, Elovl7 與 Acsl6 mRNA表現量呈正相關性。 發育階段的腦幹中的非常長鏈飽和與單元不飽和脂肪酸,有隨年齡增加至21~28天時而含量逐漸增加,並在成年後維持plateau至360天大,而腦幹中參與其合成相關的酵素Elovl1和Elovl7基因表現量,亦隨出生至21天或28天大時表現量逐漸上升,並在成年後逐漸下降至210天大時持平。不同年齡腦幹的20:0、22:0、24:0、20:1n-9 和24:1n-9含量皆與Elovl1和Elovl7基因表現量呈正相關性。 在機械痛覺行為實驗以及熱痛檢測的溫水閃尾實驗皆顯示,210天至360天的大鼠其痛覺敏感度皆顯著低於21天至28天大的大鼠。 本論文推論,組織間有不同的參與脂肪酸合成相關酵素與嵌入磷脂膜相關的蛋白質表現量,而影響組織間的脂肪酸組成特性。隨著大鼠年齡增加,其機械痛與熱痛的敏感度皆逐漸下降。 | zh_TW |
| dc.description.abstract | Fatty acids are the most important and common component of lipids and are presented in phospholipids which are the major component of cell membranes. Long-chain fatty acids are biosynthesized via fatty acid desaturases (FADSs) and very long chain elongases (ELOVLs), following by converted to acyl-Co-A by long-chain acyl-CoA synthetases (ACSLs) and then incorporated into lyso-phosphatidic acid or lyso-phospholipids by 1-acyl-sn-glycerol-3-phosphate acyltransferases (AGPATs) in de novo synthesis or by lyso-phospholipid acyl transferases (LPCATs) in the deacylation-reacylation process, respectively, to produce the diversity of membrane phospholipids. The aim of this thesis was to examine fatty acid metabolism in tissues by conducting the correlation of fatty acid levels and its enzyme expression involved in fatty acid biosynthesis and incorporation into phospholipids in a chow diet fed 8 weeks old male rats and in developing rat brain stem. The fatty acid composition by GC and mRNA expression by RT-qPCR were analyzed. Correlation analysis was performed by Pearson correlation coefficient. The mechanical and thermal pain were also measured in rats at age of 21, 28, 60, 210 and 360 days old.
Very long chain saturated (20:0, 22:0 and 24:0) and unsaturated (20:1n-9, 24:1n-9) fatty acids were mainly rich in brain stem. Linoleic acid (18:2n-6) were enriched in adipose and plasma, muscle and liver; arachidonic acid (20:4n-6) were in adrenal gland, pituitary gland, liver and plasma; docosapentaenic acid (22:5n-6) were in testis; docosahexaenoic acid (22:6n-3) were in retina, cortex, hippocampus, cerebellum and muscle. The enzymes involved in fatty acid biosynthesis, Fads2 mRNA and Fads1 mRNA were mainly expressed in liver and adrenal gland; Elovl2 mRNA were in retina and testis; Elovl1 mRNA was in brain stem and lung; Elovl7 mRNA were in brain stem and adrenal gland. The enzymes involved in fatty acid incorporation into phospholipids, Acsl1 mRNA were mainly expressed in liver and adipose; Acsl3 mRNA and Acsl 6 mRNA were in brain; Acsl4 mRNA were in adrenal gland; Acsl5 mRNA were in liver and lung, Agpat4 mRNA, Agpat5 mRNA and LPACAT4 mRNA were in brain, Lpcat1 mRNA and Lpcat2 mRNA were in retina; Lpcat3 were in adrenal gland and testis. The 22:6n-3 levels were significantly positively correlated with the mRNA expression of Elovl2, Acsl3, Acsl6, Lpcat1, Lpcat2, Lpcat3, Agpat4 and Agpat5 in tissues. The levels of very long chain saturated and unsaturated fatty acids were significantly positively associated with Elovl1, Elovl7 and Acsl6 in tissues. The brain stem 20:0, 22:0, 24:0, 20:1n-9 and 24:1n-9 levels were increased during brain development up to age of 21-28 days old and then plateau up to the examined age at age of 360 days old. The enzymes involved its biosynthesis Elovl1 mRNA and Elovl7 mRNA expression were increased in the developing brain up to age of 21-28 days old, then dropped down to 210 days old. The levels 20:0, 22:0, 24:0, 20:1n-9 and 24:1n-9 were significantly positively associated with the mRNA expression of Elovl1 and Elovl7 in developing brain stem. The mechanical pain by Von Frey filament as well as the thermal pain by tail flick via warm water and plantar test were significantly higher at age of 21-28days old compared to the age of 210-360 days old. It was concluded that fatty acid distribution was different among the tissues that may resulted from the enzymes involved its fatty acid biosynthesis and incorporation into phospholipids. The pain sensitivity is decreased in aging. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:13Z (GMT). No. of bitstreams: 1 ntu-109-R06441003-1.pdf: 5636023 bytes, checksum: 26ca7343d2578e383b0af7c63f462e92 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III 目錄 V 圖表錄 VIII 第一章、文獻回顧 1 一、 前言 1 二、 飽和、單元不飽和與多元不飽和脂肪酸之簡介 1 三、 參與脂肪酸合成及嵌入細胞膜磷脂質相關酵素及蛋白質 4 四、 腦幹之簡介 10 第二章、研究目的與實驗設計 12 一、 脂肪酸合成相關酵素以及吸收和嵌入磷脂膜相關的蛋白質基因表現量,是否會影響腦區和組織間的脂肪酸組成成分 12 1. 假設 12 2. 實驗設計 12 二、 探討腦幹發育及成年後之飽和與單元不飽和脂肪酸的含量,與其合成相關酵素之基因表現量之間的相關性 13 1. 研究目的 13 2. 實驗設計 13 三、 探討年齡對腦幹痛覺功能影響 14 1. 研究目的 14 2. 實驗設計、材料與方法 14 第三章、材料與方法 15 一、 實驗動物、飼養條件與實驗飼料 15 二、 氣相層析儀分析脂肪酸組成 16 三、 以即時聚合酶連鎖反應分析基因表現量 17 四、 痛覺行為實驗檢測 19 五、 數據統計分析 22 第四章、實驗結果 23 第一部份 23 一、 比較大鼠腦區和組織間的飽和、單元不飽和與n-3和n-6多元不飽和脂肪酸的成分百分比。 23 二、 分析大鼠腦區和組織的脂肪酸合成酵素和吸收相關蛋白質的基因表現量。。 25 三、 腦區和組織的脂肪酸成分重量百分比與基因表現量結果之相關性。 30 第二部分。 36 一、 不同年齡大鼠腦幹和大腦皮層的飽和與單元不飽和脂肪酸組成之比較 37 二、 不同年齡大鼠腦幹和大腦皮層的飽和與單元不飽和脂肪酸合成相關酵素的基因表現量之比較 38 三、 不同年齡大鼠腦幹和大腦皮層的飽和及單元不飽和脂肪酸組成成分與其合成相關的酵素基因表現量之相關性統計結果。 39 第三部分 43 一、 不同年齡大鼠的機械痛及熱痛之痛覺敏感度的比較 43 第五章、討論 45 一、 實驗動物的組織收集、數據分析以及呈現 45 二、 脂肪酸合成相關酵素之基因表現量與其產物之相關性 46 三、 探討組織的脂肪酸組成特性是由組織內自行合成或直接吸收 48 四、 人類與大鼠組織的脂肪酸組成和其合成相關酵素表現量比較 53 五、 脂肪酸吸收及嵌入磷脂膜相關之蛋白質的基因表現量與相關性統計結果 54 六、 年齡變化對於腦幹脂肪酸組成與痛覺之影響 59 第六章、結論 62 一、 腦區和組織間的脂肪酸合成相關基因表現量,對該組織的脂肪酸組成成分含量的影響 62 二、 不同年齡腦幹中參與合成飽和與單元不飽和脂肪酸的相關酵素基因表現量,對腦幹脂肪酸組成成分的影響 62 三、 年齡對於腦幹之痛覺調控的影響 63 圖(Figure) 64 表(Table) 104 附錄(Appendix) 121 參考文獻 130 | |
| dc.language.iso | zh-TW | |
| dc.title | 探討大鼠發育腦幹與成年組織的脂肪酸成分與相關酵素基因表現量之相關性 | zh_TW |
| dc.title | The correlation of fatty acid levels and the enzyme gene expression in developing rat brain stem and adult tissues | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃青真,胡孟君,吳文惠 | |
| dc.subject.keyword | 脂肪酸,代謝,腦幹,痛覺,生命期, | zh_TW |
| dc.subject.keyword | fatty acids,metabolism,brain stem,pain,lifespan, | en |
| dc.relation.page | 140 | |
| dc.identifier.doi | 10.6342/NTU202000599 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-02-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| dc.date.embargo-lift | 2030-03-01 | - |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 此日期後於網路公開 2030-03-01 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
