Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72073
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱俊翔
dc.contributor.authorYi-Ting Leeen
dc.contributor.author李奕霆zh_TW
dc.date.accessioned2021-06-17T06:21:58Z-
dc.date.available2021-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-18
dc.identifier.citation1.邱俊翔、戴偉倫、陳家漢 (2011),「飽和砂土中模型樁之側向遲滯行為」,國家地震中心年度成果報告。
2.翁作新、陳家漢、陳益成、曾永成 (2007),「模型樁在砂土中之側推及振動台試驗」,國家地震中心年度成果報告。
3.楊宗翰 (2016),「具不同上部結構之樁基礎受振行為」,國立中央大學碩士論文。
4.張有齡、周南山 (1989),「張氏簡易側樁分析法(上篇:靜力部分)」,地工技術,第25期,第64-82頁。
5.American Petroleum Institute, (1987), Recommended practice for planning, designing and construction fixed offshore platforms, API Recommendation Practice 2A(RP 2A), 17th Edition.
6.Bhattacharya S., (2003), “Pile Instability during earthquake liquefaction.” Ph.D Dissertation, University of Cambridge, Cambridge, UK.
7.Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W., and Abghari, A., (2009), “Seismic soil-pile-structure interaction experiments and analysis.” Journal of Geotechnical and Geoenvironmental Engieering, 125(9), pp. 750-759.
8.Hardin, B.O., and Black, W.L., (1968), “Vibration Modulus of Normally Consolidated Clay.” J. of the Soil Mechanics and Foundations Div. ASCE. 94(SM2), pp. 353-369.
9.Hardin, B.O., and Drnevich, V.P. (1972a), “Shear modulus and damping in soils: Measurement and parameter effects.” Journal of Soil Mechanics and Foundations Division, ASCE. 98(6): pp. 603-624.
10.Hardin, B.O., and Drnevich, V.P. (1972a), “Shear modulus and damping in soils: Design equations and curves.” Journal of Soil Mechanics and Foundations Division, ASCE. 98(7): pp. 667-692.
11.Hardin, B.O., and Richart, F.E. Jr., (1963), “Elastic wave velocities in granular soils.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33-65.
12.Hashash, Y.M.A., Musgrove, M.L., Harmon, J.A., Groholski, D.R., Phillips, C.A., and Park, D., (2016), “DEEPSOIL 6.1, User Manual”.
13.Hussien, M.N., Tobita, T., Iai, S., and Karray, M., (2016), “Soil-pile-structure kinematic and inertial interaction observed in geotechnical centrifuge experiments.” Soil Dynamics and Earthquake Engineering, 89, pp. 75-84.
14.Iwasaki, T. and Taksuoka, F., (1977), “Effects of Grain size and grading on dynamic shear moduli of sands.” Soils and Foundations, Vol. 17, No. 3, pp. 19-35.
15.Kokusho, T., (1980), “Cyclic triaxial test of dynamic soil properties for wide strain range.” Soils Found. 20, No. 2, pp. 45-60.
16.Kondner, R. L., (1963), “Hyperbolic stress-strain response: Cohesive soils.” J. Soil Mechanics and Foundation Div., ASCE, Vol. 89., No. 1, pp. 115-144.
17.Masing, G., (1926), “Interal (residual) stresses and hardening of brass.” Proceedings, 2nd Int. Congress of Applied Mechanics, Zurich, Switzerland, pp, 332-335.
18.Mucciacciaro, M., and Sica, S., (2018), “Nonlinear soil and pile behavior on kinematic banding response of flexible piles.” Soil Dynamics and Earthquake Engineering, 107, pp. 195-213.
19.Muqtadir, A., and Desai, C.S., (1986), “Three-dimensional analysis of pile-group foundation.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 10, pp. 41-58.
20.Rayleigh J.W.S., and Lindsay, R.B., (1945), “The Theory of Sound, Volume One: Unabridged Second Revised Edition.” Dover Publications, New York.
21.Reese, L.C., and Matlock, H., (1956), “Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth,” Proceedings of the Eighth Texas Conference on Soil Mechanics and Foundation Engineering, University of Texas, Austin, Texas.
22.Reese, L.C., Cox, W.R., and Koch, F.D., (1974), “Analysis of laterally loaded piles and sand,” Proceedings, 6th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. 2080, pp. 473-484.
23.SAP2000 basic analysis reference, Version 19., (2017), Computers & Structures, Berkeley, California, USA.
24.Scot, R.F., (1981), “Foundation analysis.” New Jersey: Prentice Hall, Englewood Cliffs.
25.Seed, H.B., and Idriss, I.M., (1970), “Soil Module and damping factors for Dynamic response analyses.” Earthquake Engineering Research Center, University of California, Report No. EERC-70-10.
26.Tatsuoka, F.. and Kohata, Y., (1994), “Stiffness of hard soils and soft rocks in engineering applications.” Proc. Of Int. symp. on Pre-failure Deformations of Geotechnicals, Balkema, Vol. 2, pp. 947-1066.
27.Terzaghi, K., (1955), “Evaluation of coefficients of subgrade reaction,” Geotechnique, Vol. 5, No. 4, pp. 297-326.
28.Tokimatsua, K., Suzuki, H., Sato, M., (2005), “Effects of Inertial and Kinematic Interaction on Seismic Behavior of Pile with Embedded Foundation.” Soil Dynamics and Earthquake Engineering, 25, pp. 753-762.
29.Tsai, C.C., Park, D., and Chen, C.W., (2014), “Selection of the optimal frequencies of viscous damping formulation in nonlinear time-domain site response analysis.” Soil Dynamics and Earthquake Engineering, 67, pp. 353-358.
30.Wang, S., Kutter. B.L., Chacko, M.J., Wilson, D.W., Boulanger, R.W., and Abghari, A., (1998), “Nonlinear Seismic Soil-Pile Structure Interaction.” Earthquake Spectra, Vol. 14, No.2.
31.Yang, E.K., Choi, J.I., Kwon, S.Y., Kim, M.M., (2010), “Development of Dynamic p-y Backbone Curves for a Single Pile in Dense Sand by 1g Shaking Table Tests.” KSCE Journal of Civil Engineering, 15(5), pp. 813-821.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72073-
dc.description.abstract本研究利用SAP2000程式針對含有不同上部結構配置之樁基礎離心機振動台試驗進行數值模擬分析,藉以探討結構物慣性力及地盤運動效應對於樁基礎受震反應之影響。離心機模型試驗係由楊宗翰(2016)完成,模型為埋置於乾砂土層中之樁基礎,砂土相對密度為80%及50%,經離心機80倍重力場放大後土層厚度為25.2 m,樁頂設計質量塊以模擬上部結構質量,搭配三種不同樁長之情況以代表不同結構動態系統特性。輸入運動採簡諧波,並考慮不同之振動頻率及振幅。
數值模型方面使用梁-彈簧-阻尼模式建立一套結合地盤反應及結構-樁-土互制分析之模型,以同時考量樁基礎受震時地盤運動及結構慣性力之效應,並以離心機振動台樁基礎受震試驗進行驗證,確定數值分析模型之適用性。土壤受震時之地盤運動以剪力梁模式進行模擬,以SAP2000沿垂直方向設置分布剪力彈簧模擬土層,以雙曲線骨架曲線搭配簡易梅新規則(Masing rule)定義土壤彈簧之非線性遲滯行為;樁-土間之互制行為則以溫克基礎模式(Winkler model)建立數值模型,以雙曲線函數表示之p-y曲線搭配簡易之梅新規則,模擬土壤受樁基礎側向擠壓而呈現之非線性行為。
zh_TW
dc.description.abstractThis study uses SAP2000 to simulate the dynamic responses of different structure-pile-soil models under centrifuge shaking table testing, considering both the inertia effect from the structure mass and kinematic effect of ground on the pile. The centrifuge models consisted of piles embedded in dry sand under 80g centrifuge acceleration. The thickness of sand in the prototype was 25.2 m with relative density of 80% and 50%. A mass block was placed on the top of the pile to simulate the mass of the structure. Different extended lengths of the pile above the ground were adopted to represent different dynamic characteristics of the structural system.
In the numerical model, a mass-pile-soil model connected to a shear beam model is established to consider both inertia and kinematic effects at the same time. The shear beam model adopts a series of vertically distributed horizontal springs, which adopts a hyperbolic shear force-displacement curve and the Masing rule for the hysteretic response, to simulate the seismic ground responses. For the pile-soil interaction behavior in the mass-pile-soil model, beam elements are used to model the pile, while the spring elements are used to model the soil reactions. The soil springs are defined by hyperbolic p-y curves and their hysteretic response is modeled by the Masing rule. A series of verification analyses show that the numerical ground, pile and structure responses from the proposed combined model are in good agreement with the centrifuge test results.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:21:58Z (GMT). No. of bitstreams: 1
ntu-107-R05521124-1.pdf: 32004788 bytes, checksum: e64f00685d3f8841a187eeedc3d243c1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents一、緒論 1-1
1.1研究背景與目的 1-1
1.2研究方法 1-1
1.3研究內容 1-1
二、文獻回顧 2-1
2.1樁基礎受振反應及相關試驗研究 2-1
2.2樁基礎受震反應分析方法 2-4
2.3小結 2-8
三、離心機振動台試驗回顧與分析 3-1
3.1試驗規劃 3-1
3.2試驗結果探討 3-3
3.3小結 3-8
四、水平地盤受震反應剪力梁分析模型 4-1
4.1土壤模型建立 4-1
4.2數值模擬結果比較 4-7
4.3其他數值分析程式之比較 4-9
4.4小結 4-11
五、樁-土互制系統數值分析模型 5-1
5.1樁-土互制模型建立 5-1
5.2數值模擬結果比較 5-7
5.3樁基礎受震行為探討 5-12
5.4小結 5-13
六、結論與建議 6-1
6.1結論 6-1
6.2建議 6-2
參考文獻 R-1
第三章附圖 A-1
第四章附圖 B-1
第五章附圖 C-1
dc.language.isozh-TW
dc.subject剪力梁模型zh_TW
dc.subject結構-樁-土互制系統zh_TW
dc.subject阻尼模式zh_TW
dc.subject非線性動態分析zh_TW
dc.subject離心機振動台試驗zh_TW
dc.subjectcentrifuge shaking table testsen
dc.subjectstructure-pile-soil systemen
dc.subjectdamping modelen
dc.subjectnonlinear dynamic analysisen
dc.subjectshear beam modelen
dc.title離心機振動台試驗樁土互制行為之數值分析zh_TW
dc.titleAnalysis of Pile-Soil Dynamic Interaction Responses under Centrifuge Shaking Table Testingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪汶宜,鄒瑞卿
dc.subject.keyword剪力梁模型,結構-樁-土互制系統,阻尼模式,非線性動態分析,離心機振動台試驗,zh_TW
dc.subject.keywordshear beam model,structure-pile-soil system,damping model,nonlinear dynamic analysis,centrifuge shaking table tests,en
dc.relation.page327
dc.identifier.doi10.6342/NTU201803190
dc.rights.note有償授權
dc.date.accepted2018-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
31.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved