請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王彥士(Yane-Shih Wang) | |
| dc.contributor.author | Chun-Ju Tsou | en |
| dc.contributor.author | 鄒淳如 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:40:13Z | - |
| dc.date.available | 2024-08-19 | |
| dc.date.available | 2021-05-19T17:40:13Z | - |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | (1) 衛生福利部國民健康署 世界糖尿病日由來與國內宣導響應. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1090&pid=6426 (accessed Aug 3).
(2) World Health Organization The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed Aug 3). (3) Steiner, D. F.; Park, S. Y.; Stoy, J.; Philipson, L. H.; Bell, G. I., A brief perspective on insulin production. Diabetes Obes. Metab. 2009, 11 Suppl 4, 189-96. (4) Tibaldi, J. M., Evolution of insulin: from human to analog. Am. J. Med. 2014, 127 (10 Suppl), S25-38. (5) Zaykov, A. N.; Mayer, J. P.; DiMarchi, R. D., Pursuit of a perfect insulin. Nat. Rev. Drug. Discov. 2016, 15 (6), 425-39. (6) Havelund, S. P., A.; Ribel, U.; Jonassen, I.; Vølund, A.; Markussen, J.; Kurtzhals, P. , The Mechanism of Protraction of Insulin Detemir, a Long-Acting, Acylated Analog of Human Insulin. Pharm. Res. 2004, 21 (8), 1498-1504. (7) Jonassen, I.; Havelund, S.; Hoeg-Jensen, T.; Steensgaard, D. B.; Wahlund, P. O.; Ribel, U., Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res. 2012, 29 (8), 2104-14. (8) Chou, D. H.; Webber, M. J.; Tang, B. C.; Lin, A. B.; Thapa, L. S.; Deng, D.; Truong, J. V.; Cortinas, A. B.; Langer, R.; Anderson, D. G., Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (8), 2401-6. (9) Roberts, B. K.; Wang, X.; Rosendahl, M. S. The in Vitro and in Vivo Pharmacology of AB101, a Potential Once-Weekly Basal Subcutaneous Insulin; AntriaBio, Inc.: 2015. (10) Boucher, J.; Kleinridders, A.; Kahn, C. R., Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect Biol. 2014, 6 (1). (11) Menting, J. G.; Whittaker, J.; Margetts, M. B.; Whittaker, L. J.; Kong, G. K.; Smith, B. J.; Watson, C. J.; Zakova, L.; Kletvikova, E.; Jiracek, J.; Chan, S. J.; Steiner, D. F.; Dodson, G. G.; Brzozowski, A. M.; Weiss, M. A.; Ward, C. W.; Lawrence, M. C., How insulin engages its primary binding site on the insulin receptor. Nature 2013, 493 (7431), 241-5. (12) Weis, F.; Menting, J. G.; Margetts, M. B.; Chan, S. J.; Xu, Y.; Tennagels, N.; Wohlfart, P.; Langer, T.; Muller, C. W.; Dreyer, M. K.; Lawrence, M. C., The signalling conformation of the insulin receptor ectodomain. Nat. Commun. 2018, 9 (1), 4420. (13) Lallemand, C.; Simansour, M.; Liang, F.; Ferrando-Miguel, R.; Tovey, M. G., Establishment of a Novel iLite™ Reporter Gene Assay for the Quantification of the Activity and Neutralizing Antibody response to Insulin Products. SAS, B., Ed. 2016. (14) Lu, Y.; Yeung, N.; Sieracki, N.; Marshall, N. M., Design of functional metalloproteins. Nature 2009, 460 (7257), 855-62. (15) Kaplan, J.; Degrado, W. F., De novo design of catalytic proteins. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (32), 11566–11570. (16) Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.; Arnold, F. H., Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme. Nat. Chem. 2017, 9 (7), 629-634. (17) Kan, S. B. J.; Lewis, R. D. C., K.; Arnold, F. H., Directed Evolution of Cytochrome c for Carbon–Silicon Bond Formation: Bringing Silicon to Life. Science 2016, 354 (6315), 1048–1051. (18) Chen, K.; Huang, X.; Kan, S. B. J.; Zhang, R. K.; Arnold, F. H., Enzymatic construction of highly strained carbocycles. Science 2018, 360 (6384), 71-75. (19) Drienovska, I.; Rioz-Martinez, A.; Draksharapu, A.; Roelfes, G., Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 2015, 6 (1), 770-776. (20) Antos, J. M.; Francis, M. B., Transition metal catalyzed methods for site-selective protein modification. Curr Opin Chem Biol. 2006, 10 (3), 253-62. (21) Tilley, S. D.; Francis, M. B., Tyrosine-selective protein alkylation using pi-allylpalladium complexes. J. Am. Chem. Soc. 2006, 128 (4), 1080-1. (22) Vohidov, F.; Coughlin, J. M.; Ball, Z. T., Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains. Angew. Chem. Int. Ed. 2015, 54 (15), 4587-91. (23) Poulsen, T. B.; Jorgensen, K. A., Catalytic asymmetric Friedel-Crafts alkylation reactions--copper showed the way. Chem. Rev. 2008, 108 (8), 2903-15. (24) Zhang, Y.; Orner, B. P., Self-assembly in the ferritin nano-cage protein superfamily. Int. J. Mol. Sci. 2011, 12 (8), 5406-21. (25) Truffi, M.; Fiandra, L.; Sorrentino, L.; Monieri, M.; Corsi, F.; Mazzucchelli, S., Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer. Pharmacol. Res. 2016, 107, 57-65. (26) Theil, E. C.; Behera, R. K.; Tosha, T., Ferritins for Chemistry and for Life. Coord. Chem. Rev. 2013, 257 (2), 579-586. (27) Pozzi, C.; Di Pisa, F.; Bernacchioni, C.; Ciambellotti, S.; Turano, P.; Mangani, S., Iron binding to human heavy-chain ferritin. Acta Cryst. 2015, 71 (Pt 9), 1909-20. (28) Huard, D. J.; Kane, K. M.; Tezcan, F. A., Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nat. Chem. Biol. 2013, 9 (3), 169-76. (29) Cooper, G. M.; Hausman, R. E., The cell: a molecular approach. 2 ed.; ASM press: Washington, DC, 2000. (30) Böck, A.; Stadtman, T., Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism. BioFactors 1988, 1 (3), 245-250. (31) Gaston, M. A.; Jiang, R.; Krzycki, J. A., Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr. Opin. Microbiol. 2011, 14 (3), 342-349. (32) Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G., A general method for site-specific incorporation of unnatural amino acids into proteins. Science 1989, 244 (4901), 182-188. (33) Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G., Expanding the genetic code of Escherichia coli. Science 2001, 292 (5516), 498-500. (34) Wang, L.; Xie, J.; Schultz, P. G., Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 225-49. (35) O'Donoghue, P.; Ling, J.; Wang, Y. S.; Soll, D., Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 2013, 9 (10), 594-8. (36) Wang, Q.; Parrish, A. R.; Wang, L., Expanding the genetic code for biological studies. Chem Biol. 2009, 16 (3), 323-36. (37) Neumann, H.; Peak-Chew, S. Y.; Chin, J. W., Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. Nat. Chem. Biol. 2008, 4 (4), 232-4. (38) Xie, J.; Supekova, L.; Schultz, P. G., A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. ACS Chem. Biol. 2007, 2 (7), 474-478. (39) Liu, H.; Wang, L.; Brock, A.; Wong, C.-H.; Schultz, P. G., A method for the generation of glycoprotein mimetics. J. Am. Chem. Soc. 2003, 125 (7), 1702-1703. (40) Liu, W. R.; Wang, Y. S.; Wan, W., Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. Mol. Biosyst. 2011, 7 (1), 38-47. (41) Yang, B.; Tang, S.; Ma, C.; Li, S. T.; Shao, G. C.; Dang, B.; DeGrado, W. F.; Dong, M. Q.; Wang, P. G.; Ding, S.; Wang, L., Spontaneous and specific chemical cross-linking in live cells to capture and identify protein interactions. Nat. Commun. 2017, 8 (1), 2240. (42) Wang, L.; Zhang, Z.; Brock, A.; Schultz, P. G., Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (1), 56-61. (43) Deiters, A.; Cropp, T. A.; Mukherji, M.; Chin, J. W.; Anderson, J. C.; Schultz, P. G., Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. J. Am. Chem. Soc. 2003, 125 (39), 11782-11783. (44) Wang, Y. S.; Fang, X.; Wallace, A. L.; Wu, B.; Liu, W. R., A rationally designed pyrrolysyl-tRNA synthetase mutant with a broad substrate spectrum. J. Am. Chem. Soc. 2012, 134 (6), 2950-3. (45) Takimoto, J. K.; Dellas, N.; Noel, J. P.; Wang, L., Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem. Biol. 2011, 6 (7), 733-43. (46) Xiao, H.; Peters, F. B.; Yang, P. Y.; Reed, S.; Chittuluru, J. R.; Schultz, P. G., Genetic incorporation of histidine derivatives using an engineered pyrrolysyl-tRNA synthetase. ACS Chem. Biol. 2014, 9 (5), 1092-6. (47) Poppe, L.; Retey, J., Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine. Angew. Chem. Int. Ed. 2005, 44 (24), 3668-88. (48) Shevchenko, A.; Tomas, H.; Havli, J.; Olsen, J. V.; Mann, M., In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1 (6), 2856. (49) Trinh, R.; Gurbaxani, B.; Morrison, S. L.; Seyfzadeh, M., Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Mol. immunol. 2004, 40 (10), 717-722. (50) McKern, N. M.; Lawrence, M. C.; Streltsov, V. A.; Lou, M. Z.; Adams, T. E.; Lovrecz, G. O.; Elleman, T. C.; Richards, K. M.; Bentley, J. D.; Pilling, P. A.; Hoyne, P. A.; Cartledge, K. A.; Pham, T. M.; Lewis, J. L.; Sankovich, S. E.; Stoichevska, V.; Da Silva, E.; Robinson, C. P.; Frenkel, M. J.; Sparrow, L. G.; Fernley, R. T.; Epa, V. C.; Ward, C. W., Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 2006, 443 (7108), 218-21. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7206 | - |
| dc.description.abstract | 隨著現代飲食精緻化,糖尿病的盛行率逐年提升。世界衛生組織統計全世界約超過4.2億患有糖尿病,臺灣在擁有200多萬糖尿病患者成因下,此疾病也成為2018年國人第五大死因。自1922年首次將胰島素作為藥物使用以來,胰島素一直是糖尿病患者最主要的治療方式,而為了因應不同的血糖調控需求,各式胺基酸序列改變及化學修飾的胰島素類似物也相繼研究開發。然而,由於胰島素的修飾受到了自然胺基酸側鏈官能基的蛋白質化學限制,此研究藉由設計新穎的金屬酶以增加胰島素類似物多樣性,並放眼未來用於活體內進行蛋白質轉譯後修飾的催化。
文獻研究已指出銅離子可作為路易斯酸用以催化傅-克烷基化,為了催化α,β-不飽和羰基化合物與胰島素的芳香族胺基酸之間的專一反應,此研究改造人類重鏈攜鐵蛋白設計了新穎的含銅酵素。攜鐵蛋白是一種普遍存在於生物體內用於儲存和釋放鐵離子的蛋白質,屬於24蛋白單體自組裝的籠蛋白群組。在這此研究中,我們將胰島素受體羧基末端α螺旋的αCT片段連接於攜鐵蛋白末端,並利用吡咯-轉核糖核酸合成酶•tRNAPyl突變株配對將非典型胺基酸嵌入籠狀攜鐵蛋白的C2界面,建構新的金屬螯合位。經由蛋白質譜分析,新型攜鐵蛋白球在螯合銅離子下,專一地對胰島素的B鏈的HisB5位點進行位置特異的烷基化修飾。總結本研究,新型含銅攜鐵蛋白球酵素具有胰島素特定位置修飾功能,可以催化胰島素B鏈上HisB5的傅-克烷基化反應,球體外露αCT胜肽鏈和胰島素的親合鍵結設計也能增進傅-克烷基化的效率。 | zh_TW |
| dc.description.abstract | According to WHO, more than 422 million people are diagnosed with diabetes around the world, and in Taiwan, 2 million people are suffering from diabetes. Since insulin is the major treatment to those patients, development of efficient insulin drugs is of great significance. However, modifications of insulin analogues are limited by the deficiency of protein chemistry, therefore our goal is to construct a post-translational modification (PTM) enzyme aimed to explore new protein chemistry and enrich the chemical diversity of insulin.
Previous literature has performed Friedel-Crafts alkylation using copper ion, however, without specificity. To catalyze reactions between small molecules with α,β-unsaturated carbonyl and aromatic amino acids on insulin, a metalloprotein based biocatalysis platform using human heavy chain ferritin was designed. Ferritin is a family of self-assembled 24-subunits protein cages who act as antioxidants by storing and releasing irons. In this study, a ferritin-αCT fusion protein containing the insulin receptor carboxy-terminal α-chain (αCT) segment on its C-terminus was constructed. Non-canonical amino acids (ncAAs), L-2-(5-Bromothienyl)alanine, H-N-3-Methyl-L-histidine, and 3-(4-Thiazolyl)-L-alanine, are then incorporated at the C2 interface by evoluted pyrrolysyl-tRNA synthetase (PylRS)•tRNAPyl pair, followed by the introduction of Cu(II) after iron ion removal. With evidences of protein mass spectrometry analysis, engineered ferritin-αCT variants have demonstrated specificity toward insulin modification by catalyzing Friedel-Crafts alkylation between the first histidine on B chain and diethyl ethylidenemalonate (DEEM). | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:13Z (GMT). No. of bitstreams: 1 ntu-108-R06b46037-1.pdf: 5198470 bytes, checksum: dd9e151f618e12c6a3e1221734014f30 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Table of contents
誌謝 I 摘要 II Abstract III Table of contents IV List of schemes VII List of tables VIII List of figures IX Abbreviations 1 Chapter 1 Introduction 4 1-1 Diabetes and insulin 4 1-1-1 Type 1 and type 2 diabetes 4 1-1-2 Types of insulin analogues 5 1-1-3 Chemical modifications of insulin analogues 6 1-1-4 How insulin binds to its receptor 7 1-2 Metalloprotein and biocatalysis 8 1-2-1 Engineering of metalloproteins 9 1-2-2 Protein modifications of selective biocatalysis 10 1-3 Properties of ferritin 10 1-3-1 Biological functions of ferritin 10 1-3-2 Structural and symmetrical features of ferritin 11 1-4 Incorporation of non-canonical amino acids 12 1-4-1 Protein translation 12 1-4-2 Expanding genetic code 13 1-5 Specific aim 14 Chapter 2 Materials and methods 16 2-1 DNA and protein sequences 16 2-1-1 DNA sequences 16 2-1-2 Protein sequences 17 2-2 Plasmid design 18 2-2-1 List of primers 18 2-2-2 Plasmids 19 2-3 Protein overexpression and purification 23 2-4 Protein gel electrophoresis 25 2-4-1 SDS-PAGE analysis 25 2-4-2 Native gel analysis 25 2-5 Biophysical characterization 26 2-5-1 Dynamic light scattering (DLS) analysis 26 2-5-2 Transmission electron microscope (TEM) analysis 26 2-6 Friedel-Crafts alkylation of aromatic amino acids 27 2-8 Protein chemistry 27 2-8-1 Cu(II) binding Ftn and F-α variants preparation 27 2-8-2 Cu(II)-binding Ftn and F-α variants-catalyzed insulin modifications 27 2-9 Mass spectrometry 28 2-9-1 ESI-MS 28 2-9-2 MALDI-TOF-MS/MS 28 2-9-3 ICP-MS 29 Chapter 3 Results and Discussion 31 3-1 Design of Friedel-Crafts metalloenzyme for insulin modification 31 3-1-1 Construction of αCT peptide fusion ferritin 31 3-1-2 Protein sequence design of αCT peptide fusion ferritin 31 3-1-3 Analysis of F-α binding affinity with different linkers 32 3-2 Characterization of interactions between F-α and insulin 32 3-3 Friedel-Crafts alkylation of aromatic amino acids 33 3-4 Insulin modifications by Cu(II) binding Ftn variants 34 3-4-1 Modification of ferritin C2 interface by ncAA incorporation 34 3-4-2 ICP-MS analysis of metal binding engineering 34 3-4-3 Construction of metal binding Ftn variants with αCT fusion 36 3-4-4 ESI-MS analysis of Ftn variants 36 3-4-5 MALDI-TOF-MS analysis of insulin modification 36 3-4-6 MALDI-TOF-MS/MS analysis of insulin modification 37 Chapter 4 Conclusion 38 Reference 77 Appendix 83 | |
| dc.language.iso | en | |
| dc.title | 設計新穎含金屬酵素催化胰島素轉譯後修飾 | zh_TW |
| dc.title | De novo design of a ferritin metalloenzyme for insulin modifications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡明道(Ming-Daw Tsai),陳長謙(Sunney Chan),俞聖法(Steve Sheng-Fa Yu) | |
| dc.subject.keyword | 鐵蛋白,生物催化,含金屬酵素,胰島素類似物,非典型胺基酸, | zh_TW |
| dc.subject.keyword | Ferritin,Biocatalysis,Metalloenzyme,Insulin analogs synthesis,non-canonical amino acids, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201903019 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| dc.date.embargo-lift | 2024-08-19 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 5.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
