請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72067完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生(Guey-Sheng Liou) | |
| dc.contributor.author | Teng-Yung Huang | en |
| dc.contributor.author | 黃鐙養 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:21:41Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-18 | |
| dc.identifier.citation | Chapter 1
1. S. S. Hirsch and M. R. Lilyquist, Journal of Applied Polymer Science, 1967, 11, 305-310. 2. M. J. Abadie, V. Y. Voytekunas and A. L. Rusanov, 2006. 3. D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Polyimides, Springer, 1990. 4. M. R. Ivan, Journal, 1955. 5. F. Grundschober, Toxicology, 1977, 8, 387-390. 6. K. L. Mittal, Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, CRC Press, 2007. 7. K. Carter, J. Dolden, C. Hawker, J. Hedrick, J. Labadie, K.-W. Lienert, R. Miller, T. Russell, W. Volksen and D. Yoon, Progress in Polyimide Chemistry II, Springer Science & Business Media, 1998. 8. M. Brink, D. Brandom, G. Wilkes and J. McGrath, Polymer, 1994, 35, 5018-5023. 9. S. Mehdipour-Ataei and N. Bahri-Laleh, Iranian Polymer Journal, 2008, 17, 95. 10. H.-J. Yen and G.-S. Liou, Polymer Chemistry, 2012, 3, 255-264. 11. S. Z. Cheng, F. E. Arnold Jr, A. Zhang, S. L. Hsu and F. W. Harris, Macromolecules, 1991, 24, 5856-5862. 12. N. Ogata and H. Tanaka, Polymer Journal, 1971, 2, 672-674. 13. N. Yamazaki, F. Higashi and J. Kawabata, Journal of Polymer Science Part A: Polymer Chemistry, 1974, 12, 2149-2154. 14. N. Yamazaki, M. Matsumoto and F. Higashi, Journal of Polymer Science Part A: Polymer Chemistry, 1975, 13, 1373-1380. 15. J. Preston and W. Hofferbert, 1978. 16. F. Higashi, S. I. Ogata and Y. Aoki, Journal of Polymer Science Part A: Polymer Chemistry, 1982, 20, 2081-2087. 17. J. Preston, W. Krigbaum and R. Kotek, Journal of Polymer Science Part A: Polymer Chemistry, 1982, 20, 3241-3249. 18. R. Kotek, W. Krigbaum and J. Preston, Journal of Polymer Science Part A: Polymer Chemistry, 1983, 21, 2837-2841. 19. W. Krigbaum, R. Kotek and J. Preston, Journal of Polymer Science Part A: Polymer Chemistry, 1984, 22, 873-876. 20. W. Krigbaum, R. Kotek, Y. Mihara and J. Preston, Journal of Polymer Science Part A: Polymer Chemistry, 1984, 22, 4045-4047. 21. W. Krigbaum, R. Kotek, Y. Mihara and J. Preston, Journal of Polymer Science Part A: Polymer Chemistry, 1985, 23, 1907-1916. 22. P. W. Morgan, Condensation Polymers: by Interfacial and Solution Methods, Interscience Publishers, 1965. 23. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath, Chemical Reviews, 2004, 104, 4587-4612. 24. F. Li, J. Wang, M. Zhou, X. Liu, C. Wang and D. Chao, Chemical Research in Chinese Universities, 2015, 31, 1066-1071. 25. H. R. Kricheldorf and K. Bornhorst, Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46, 3732-3739. 26. S. H. Hsiao and M. H. He, Macromolecular Chemistry and Physics, 2001, 202, 3579-3589. 27. S. H. Hsiao and G. S. Liou, Polymer Journal, 2002, 34, 917-924. 28. W. Wu, R. Tang, Q. Li and Z. Li, Chemical Society Reviews, 2015, 44, 3997-4022. 29. Y. A. Kim, Y. J. Jeon, M. Kang, S. Y. Jang, I. B. Kim, D. H. Lim, Y. J. Heo and D. Y. Kim, Organic Electronics, 2017, 46, 77-87. 30. J. Liu, Y. Shi, J. Wu, M. Li, J. Zheng and C. Xu, RSC Advances, 2017, 7, 25444-25449. 31. H. J. Yen, C. Shan, L. Wang, P. Xu, M. Zhou and H. L. Wang, Polymers, 2017, 9, 25. 32. M. Z. Elsabee, M. Nassar, R. E. Morsi and S. S. Elkholy, Polymer Composites, 2015. 33. C. Hamciuc, M. Homocianu, E. Hamciuc and I.-D. Carja, Reactive and Functional Polymers, 2016, 103, 17-25. 34. C. Jin and X. Zhu, High Performance Polymers, 0, 0954008317691585. 35. N. Avella, G. Maglio, R. Palumbo, F. Russo and M. C. Vignola, Macromolecular Rapid Communications, 1993, 14, 545-549. 36. V. L. Bell, B. L. Stump and H. Gager, Journal of Polymer Science Part A: Polymer Chemistry, 1976, 14, 2275-2291. 37. J. Critchley and M. A. White, Journal of Polymer Science Part A: Polymer Chemistry, 1972, 10, 1809-1825. 38. W. A. Feld, B. Ramalingam and F. W. Harris, Journal of Polymer Science Part A: Polymer Chemistry, 1983, 21, 319-328. 39. N. Ghatge, B. Shinde and U. Mulik, Journal of Polymer Science Part A: Polymer Chemistry, 1984, 22, 3359-3365. 40. S. H. Hsiao and P. C. Huang, Macromolecular Chemistry and Physics, 1997, 198, 4001-4009. 41. S. H. Hsiao, C. P. Yang and C. Fan Jr, Macromolecular Chemistry and Physics, 1995, 196, 3041-3052. 42. S. H. Hsiao and C. F. Chang, Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34, 1433-1441. 43. S. H. Hsiao and H. Y. Chang, Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34, 1421-1431. 44. S. H. Hsiao and P. C. Huang, Journal of Polymer Science Part A Polymer Chemistry, 1997, 35, 2421-2429. 45. S. H. Hsiao and P. C. Huang, Journal of Polymer Research, 1997, 4, 183-190. 46. S. H. Hsiao, C. P. Yang and J. C. Fan, Journal of Polymer Research, 1994, 1, 345-352. 47. S. H. Hsiao, C. P. Yang and C. K. Lin, Journal of Polymer Research, 1995, 2, 1-12. 48. S. H. Hsiao and C. H. Yu, Journal of Polymer Research, 1996, 3, 247-256. 49. G. Maglio, R. Palumba and M. C. Vignola, Macromolecular Chemistry and Physics, 1995, 196, 2775-2783. 50. S. Tamai, A. Yamaguchi and M. Ohta, Polymer, 1996, 37, 3683-3692. 51. F. Akutsu, M. Inoki, M. Sawano, Y. Kasashima, K. Naruchi and M. Miura, Polymer, 1998, 39, 6093-6098. 52. S. H. Cheng, S. H. Hsiao, T. H. Su and G. S. Liou, Macromolecules, 2005, 38, 307-316. 53. G. Eastmond, J. Paprotny and R. Irwin, Polymer, 1999, 40, 469-486. 54. J. F. Espeso, J. G. De La Campa, A. E. Lozano and J. De Abajo, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, 1014-1023. 55. J. F. Espeso, E. Ferrero, J. G. De La Campa, A. E. Lozano and J. De Abajo, Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39, 475-485. 56. X. Z. Fang, Q. X. Li, Z. Wang, Z. H. Yang, L. X. Gao and M. X. Ding, Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42, 2130-2144. 57. C. Gao, X. Wu, G. Lv, M. Ding and L. Gao, Macromolecules, 2004, 37, 2754-2761. 58. M. Hasegawa, N. Sensui, Y. Shindo and R. Yokota, Macromolecules, 1999, 32, 387-396. 59. P. Hergenrother, K. Watson, J. Smith, J. Connell and R. Yokota, Polymer, 2002, 43, 5077-5093. 60. S. H. Hsiao and C. F. Chang, Macromolecular Chemistry and Physics, 1996, 197, 1255-1272. 61. S. H. Hsiao, C. W. Chen and G. S. Liou, Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42, 3302-3313. 62. S. H. Hsiao and W. T. Chen, Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41, 420-431. 63. S. H. Hsiao, C. L. Chung and M. L. Lee, Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42, 1008-1017. 64. S. H. Hsiao and K. H. Lin, Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43, 331-341. 65. S. H. Hsiao, C. P. Yang and S. H. Chen, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, 1551-1559. 66. S. H. Hsiao, C. P. Yang, M. H. Chuang and H. C. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, 247-260. 67. S. H. Hsiao, C. P. Yang and C. Y. Yang, Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35, 1487-1497. 68. S. H. Hsiao and C. Y. Yang, Macromolecular Chemistry and Physics, 1997, 198, 2181-2195. 69. S. H. Hsiao and Y. H. Chang, European polymer journal, 2004, 40, 1749-1757. 70. S. H. Hsiao and K. Y. Chu, Journal of Polymer Science Part A Polymer Chemistry, 1997, 35, 3385-3391. 71. S. H. Hsiao and C. T. Li, Macromolecules, 1998, 31, 7213-7217. 72. S. H. Hsiao and C. T. Li, Journal of Polymer Science Part A Polymer Chemistry, 1999, 37, 1435-1442. 73. S. H. Hsiao and K. H. Lin, Polymer, 2004, 45, 7877-7885. 74. S. H. Hsiao, C. P. Yang and S. H. Chen, Polymer, 2000, 41, 6537-6551. 75. S. H. Hsiao, C. P. Yang and K. Y. Chu, Macromolecules, 1997, 30, 165-170. 76. S. H. Hsiao, C. P. Yang, S. W. Wang and M. H. Chuang, Journal of Polymer Science Part A Polymer Chemistry, 1999, 37, 3575-3583. 77. Y. Imai, High Performance Polymers, 1995, 7, 337-345. 78. Y. Imai, Reactive and Functional Polymers, 1996, 30, 3-15. 79. Y. Imai, N. Maldar and M. A. Kakimoto, Journal of Polymer Science Part A: Polymer Chemistry, 1985, 23, 1797-1803. 80. H. J. Jeong, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1991, 29, 767-772. 81. H. J. Jeong, Y. Oishi, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28, 3293-3301. 82. M. A. Kakimoto, M. Yoneyama and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1988, 26, 149-157. 83. Q. Li, X. Fang, Z. Wang, L. Gao and M. Ding, Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41, 3249-3260. 84. D. J. Liaw and B. Y. Liaw, Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37, 2791-2794. 85. D. J. Liaw, B. Y. Liaw and S. H. Lai, Macromolecular Chemistry and Physics, 2001, 202, 807-813. 86. D. J. Liaw, B. Y. Liaw and C. M. Yang, Macromolecular Chemistry and Physics, 2001, 202, 1866-1872. 87. D. J. Liaw, B. Y. Liaw and M. Q. Jeng, Polymer, 1998, 39, 1597-1607. 88. G. S. Liou and S. H. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40, 1781-1789. 89. G. S. Liou and S. H. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40, 2564-2574. 90. G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40, 2810-2818. 91. G. S. Liou, M. Maruyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31, 2499-2506. 92. G. S. Liou, M. Maruyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31, 3273-3279. 93. G. S. Liou, M. Maruyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36, 2029-2035. 94. Y. Oishi, H. Takado, M. Yoneyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28, 1763-1769. 95. D. S. Reddy, C. F. Shu and F. I. Wu, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40, 262-268. 96. Y. Sakaguchi and F. W. Harris, Polymer Journal, 1992, 24, 1147-1154. 97. T. H. Su, S. H. Hsiao and G. S. Liou, Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43, 2085-2098. 98. S. C. Wu and C. F. Shu, Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41, 1160-1166. 99. M. L. Xie, Y. Oishi, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1991, 29, 55-61. 100. C. P. Yang and J. H. Lin, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31, 2153-2163. 101. H. B. Zheng and Z. Y. Wang, Macromolecules, 2000, 33, 4310-4312. 102. L. L. Beecroft and C. K. Ober, Chemistry of Materials, 1997, 9, 1302-1317. 103. C. Sanchez, B. Lebeau, F. Chaput and J. P. Boilot, Advanced Materials, 2003, 15, 1969-1994. 104. B. M. Novak, Advanced Materials, 1993, 5, 422-433. 105. H. R. Allcock, Advanced Materials, 1994, 6, 106-115. 106. W. Caseri, Macromolecular Rapid Communications, 2000, 21, 705-722. 107. P. Judeinstein and C. Sanchez, Journal of Materials Chemistry, 1996, 6, 511-525. 108. G. Kickelbick, Progress in Polymer Science, 2003, 28, 83-114. 109. F. Mammeri, E. Le Bourhis, L. Rozes and C. Sanchez, Journal of Materials Chemistry, 2005, 15, 3787-3811. 110. E. D. Palik, Handbook of Optical Constants of Solids, Academic press, 1998. 111. A. D. Pomogailo, Russian Chemical Reviews, 2000, 69, 53-80. 112. C. Sanchez, G. d. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer and V. Cabuil, Chemistry of Materials, 2001, 13, 3061-3083. 113. W. Caseri, Materials Science and Technology, 2006, 22, 807-817. 114. A. C. Balazs, T. Emrick and T. P. Russell, Science, 2006, 314, 1107-1110. 115. T. Agag and T. Takeichi, Polymer, 1999, 40, 6557-6563. 116. S. Akimoto, M. Jikei and M.-a. Kakimoto, High Performance Polymers, 2000, 12, 177-184. 117. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu and W. C. Chen, Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48, 1433-1440. 118. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai and W. C. Chen, Journal of Materials Chemistry, 2010, 20, 531-536. 119. T. Omote, K. i. Koseki and T. Yamaoka, Macromolecules, 1990, 23, 4788-4795. 120. G. Tullos and L. Mathias, Polymer, 1999, 40, 3463-3468. 121. G. L. Tullos, J. M. Powers, S. J. Jeskey and L. J. Mathias, Macromolecules, 1999, 32, 3598-3612. 122. M. Ueda and T. Nakayama, Macromolecules, 1996, 29, 6427-6431. 123. H. S. Yu, T. Yamashita and K. Horie, Macromolecules, 1996, 29, 1144-1150. 124. P. Innocenzi and B. Lebeau, Journal of Materials Chemistry, 2005, 15, 3821-3831. 125. L. Nicole, C. Boissière, D. Grosso, A. Quach and C. Sanchez, Journal of Materials Chemistry, 2005, 15, 3598-3627. 126. A. L. Pénard, T. Gacoin and J. P. Boilot, Accounts of Chemical Research, 2007, 40, 895-902. 127. C. Sanchez, B. Julián, P. Belleville and M. Popall, Journal of Materials Chemistry, 2005, 15, 3559-3592. 128. C. Sanchez, F. Ribot and B. Lebeau, Journal of Materials Chemistry, 1999, 9, 35-44. 129. G. Schottner, Chemistry of Materials, 2001, 13, 3422-3435. 130. C. J. Brinker and G. W. Scherer, Sol-gel Science: the Physics and Chemistry of sol-gel Processing, Academic press, 2013. 131. C. Brinker, K. Keefer, D. Schaefer and C. Ashley, Journal of Non-Crystalline Solids, 1982, 48, 47-64. 132. C. Brinker, K. Keefer, D. Schaefer, R. Assink, B. Kay and C. Ashley, Journal of Non-Crystalline Solids, 1984, 63, 45-59. 133. Y. Rao and S. Chen, Macromolecules, 2008, 41, 4838-4844. 134. J. G. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando and M. Ueda, Chemistry of Materials, 2007, 20, 273-281. 135. Y. H. Chou, C. L. Tsai, W. C. Chen and G. S. Liou, Polymer Chemistry, 2014, 5, 6718-6727. 136. H. Dislich, Angewandte Chemie International Edition, 1979, 18, 49-59. 137. S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi and U. Paik, Journal of Materials Chemistry, 2008, 18, 1751-1755. 138. C. L. Tsai and G. S. Liou, Chemical Communications, 2015, 51, 13523-13526. 139. T. T. Huang, C. L. Tsai, S. Tateyama, T. Kaneko and G. S. Liou, Nanoscale, 2016, 8, 12793-12802. 140. A. T. Mane, S. T. Navale, S. Sen, D. K. Aswal, S. K. Gupta and V. B. Patil, Organic Electronics, 2015, 16, 195-204. 141. L. Shen, L. Du, S. Tan, Z. Zang, C. Zhao and W. Mai, Chemical Communications, 2016, 52, 6296-6299. 142. H. W. Su and W. C. Chen, Journal of Materials Chemistry, 2008, 18, 1139-1145. 143. A. Thelen, Design of Optical Interference Coatings, McGraw-Hill Companies, 1989. 144. F. W. Mont, J. K. Kim, M. F. Schubert, E. F. Schubert and R. W. Siegel, Journal of Applied Physics, 2008, 103, 083120. 145. F. W. Mont, J. K. Kim, M. F. Schubert, H. Luo, E. F. Schubert and R. W. Siegel, Light-Emitting Diodes: Research, Manufacturing, and Applications XI. San Jose: SPIE, 2007, 6486, 64861C. 146. J. L. H. Chau, Y. M. Lin, A. K. Li, W. F. Su, K. S. Chang, S. L. C. Hsu and T. L. Li, Materials Letters, 2007, 61, 2908-2910. 147. S. Möller, C. Perlov, W. Jackson, C. Taussig and S. R. Forrest, Nature, 2003, 426, 166-169. 148. J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma and Y. Yang, Nature Materials, 2004, 3, 918-922. 149. Q. D. Ling, Y. Song, S. L. Lim, E. Y. H. Teo, Y. P. Tan, C. Zhu, D. S. H. Chan, D. L. Kwong, E. T. Kang and K. G. Neoh, Angewandte Chemie, 2006, 118, 3013- 3017. 150. Y. H. Chou, H. C. Chang, C. L. Liu and W. C. Chen, Polymer Chemistry, 2015, 6, 341-352. 151. L. Dong, Y. C. Chiu, C. C. Chueh, A. D. Yu and W. C. Chen, Polymer Chemistry, 2014, 5, 6834-6846. 152. A. D. Yu, T. Kurosawa, M. Ueda and W. C. Chen, Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 139-147. 153. A. D. Yu, W. Y. Tung, Y. C. Chiu, C. C. Chueh, G. S. Liou and W. C. Chen, Macromolecular Rapid Communications, 2014, 35, 1039-1045. 154. J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam and B. Z. Tang, Chemical Review, 2015, 115, 11718-11940. 155. J. Zhuang, W. S. Lo, L. Zhou, Q. J. Sun, C. F. Chan, Y. Zhou, S. T. Han, Y. Yan, W.-T. Wong and K.-L. Wong, Scientific Reports, 2015, 5. 156. X. Ren and P. K. Chan, Applied Physics Letters, 2014, 104, 46_41. 157. Y. J. Jeong, E. J. Yoo, L. H. Kim, S. Park, J. Jang, S. H. Kim, S. W. Lee and C. E. Park, Journal of Materials Chemistry C, 2016, 4, 5398-5406. Chapter 2 1. Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T. Kang and K. G. Neoh, Progress in Polymer Science, 2008, 33, 917-978. 2. Y. Guo, G. Yu and Y. Liu, Advanced Materials, 2010, 22, 4427-4447. 3. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim and Y. Y. Noh, Chemistry of Materials, 2010, 23, 341-358. 4. B. M. Dhar, R. Özgün, T. Dawidczyk, A. Andreou and H. E. Katz, Materials Science and Engineering: R: Reports, 2011, 72, 49-80. 5. S. T. Han, Y. Zhou and V. Roy, Advanced Materials, 2013, 25, 5425-5449. 6. Y. H. Chou, H. C. Chang, C. L. Liu and W. C. Chen, Polymer Chemistry, 2015, 6, 341-352. 7. C. C. Shih, W. Y. Lee and W. C. Chen, Materials Horizons, 2016, 3, 294-308. 8. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai and T. Someya, Science, 2009, 326, 1516-1519. 9. C. W. Tseng and Y. T. Tao, Journal of the American Chemical Society, 2009, 131, 12441-12450. 10. C. W. Tseng, D. C. Huang and Y. T. Tao, ACS Applied Materials & Interfaces, 2012, 4, 5483-5491. 11. Y. Zhou, S. T. Han, Z. X. Xu and V. Roy, Advanced Materials, 2012, 24, 1247-1251. 12. X. Gao, X. J. She, C. H. Liu, Q. J. Sun, J. Liu and S. D. Wang, Applied Physics Letters, 2013, 102, 11. 13. S. T. Han, Y. Zhou, C. Wang, L. He, W. Zhang and V. Roy, Advanced Materials, 2013, 25, 872-877. 14. M. Kang, K. J. Baeg, D. Khim, Y. Y. Noh and D. Y. Kim, Advanced Functional Materials, 2013, 23, 3503-3512. 15. C. W. Tseng, D. C. Huang and Y. T. Tao, ACS Applied Materials & Interfaces, 2013, 5, 9528-9536. 16. Y. Zhou, S. T. Han, P. Sonar and V. Roy, Scientific Reports, 2013, 3, 2319. 17. Y. Zhou, S. T. Han, Y. Yan, L. B. Huang, L. Zhou, J. Huang and V. Roy, Scientific Reports, 2013, 3, 3093. 18. S. T. Han, Y. Zhou, Q. D. Yang, L. Zhou, L. B. Huang, Y. Yan, C.-S. Lee and V. A. Roy, ACS Nano, 2014, 8, 1923-1931. 19. H. C. Chang, C. Lu, C. L. Liu and W. C. Chen, Advanced Materials, 2015, 27, 27-33. 20. M. Kang, D. Khim, W.-T. Park, J. Kim, J. Kim, Y.-Y. Noh, K.-J. Baeg and D.-Y. Kim, Scientific Reports, 2015, 5, 12299. 21. R. H. Kim, J. Lee, K. L. Kim, S. M. Cho, D. H. Kim and C. Park, Small, 2017, 13. 22. S. J. Kang, I. Bae, Y. J. Park, T. H. Park, J. Sung, S. C. Yoon, K. H. Kim, D. H. Choi and C. Park, Advanced Functional Materials, 2009, 19, 1609-1616. 23. S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H. C. Kim, S. Bauer, E. L. Thomas and C. Park, Advanced Functional Materials, 2009, 19, 2812-2818. 24. S. J. Kang, I. Bae, Y. J. Shin, Y. J. Park, J. Huh, S. M. Park, H. C. Kim and C. Park, Nano Letters, 2010, 11, 138-144. 25. R. H. Kim, H. J. Kim, I. Bae, S. K. Hwang, D. B. Velusamy, S. M. Cho, K. Takaishi, T. Muto, D. Hashizume and M. Uchiyama, Nature Communications, 2014, 5, 3583. 26. S. W. Jung, J. B. Koo, C. W. Park, B. S. Na, N. M. Park, J. Y. Oh, Y. G. Moon, S. S. Lee and K.-W. Koo, Journal of Materials Chemistry C, 2016, 4, 4485-4490. 27. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee and D. Y. Kim, Advanced Materials, 2006, 18, 3179-3183. 28. K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim and D. Y. Kim, Advanced Functional Materials, 2008, 18, 3678-3685. 29. Y. Guo, C. a. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu and Y. Liu, Advanced Materials, 2009, 21, 1954-1959. 30. J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao and W. C. Chen, Journal of Materials Chemistry, 2012, 22, 5820-5827. 31. K. J. Baeg, D. Khim, J. Kim, B. D. Yang, M. Kang, S. W. Jung, I. K. You, D. Y. Kim and Y. Y. Noh, Advanced Functional Materials, 2012, 22, 2915-2926. 32. X. J. She, J. Liu, J. Y. Zhang, X. Gao and S. D. Wang, Applied Physics Letters, 2013, 103, 184_181. 33. Y. C. Chiu, C. L. Liu, W. Y. Lee, Y. Chen, T. Kakuchi and W. C. Chen, NPG Asia Materials, 2013, 5, e35. 34. Y. H. Chou, S. Takasugi, R. Goseki, T. Ishizone and W. C. Chen, Polymer Chemistry, 2014, 5, 1063-1071. 35. H. S. Sun, Y. C. Chiu, W. Y. Lee, Y. Chen, A. Hirao, T. Satoh, T. Kakuchi and W. C. Chen, Macromolecules, 2015, 48, 3907-3917. 36. S. Nam, J. Seo, H. Kim and Y. Kim, Applied Physics Letters, 2015, 107, 97_91. 37. F. J. Chung, H. Y. Liu, B. Y. Jiang, G. Y. He, S. H. Wang, W. C. Wu and C. L. Liu, Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54, 910-917. 38. C. T. Lo, Y. Watanabe, H. Oya, K. Nakabayashi, H. Mori and W.-C. Chen, Chemical Communications, 2016, 52, 7269-7272. 39. J. Seo, S. Nam, H. Kim, T. D. Anthopoulos, D. D. Bradley and Y. Kim, NPG Asia Materials, 2016, 8, e235. 40. C. Lee, J. Seo, J. Kim, J. Jeong, H. Han, H. Kim and Y. Kim, Scientific Reports, 2016, 6, 33863. 41. Y. H. Chou, N. H. You, T. Kurosawa, W. Y. Lee, T. Higashihara, M. Ueda and W. C. Chen, Macromolecules, 2012, 45, 6946-6956. 42. Y. H. Chou, H. J. Yen, C. L. Tsai, W. Y. Lee, G. S. Liou and W.-C. Chen, Journal of Materials Chemistry C, 2013, 1, 3235-3243. 43. A. D. Yu, T. Kurosawa, M. Ueda and W. C. Chen, Journal of Polymer Science Part A: Polymer Chemistry, 2014, 52, 139-147. 44. L. Dong, H. S. Sun, J. T. Wang, W. Y. Lee and W. C. Chen, Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53, 602-614. 45. H. Ling, J. Lin, M. Yi, B. Liu, W. Li, Z. Lin, L. Xie, Y. Bao, F. Guo and W. Huang, ACS Applied Materials & Interfaces, 2016, 8, 18969-18977. 46. Y. H. Chou, C. L. Tsai, W. C. Chen and G. S. Liou, Polymer Chemistry, 2014, 5, 6718-6727. 47. Y. C. Chiu, T. Y. Chen, Y. Chen, T. Satoh, T. Kakuchi and W.-C. Chen, ACS Applied Materials & Interfaces, 2014, 6, 12780-12788. 48. Y. C. Chiu, I. Otsuka, S. Halila, R. Borsali and W. C. Chen, Advanced Functional Materials, 2014, 24, 4240-4249. 49. Y. H. Chou, Y. C. Chiu, W. Y. Lee and W. C. Chen, Chemical Communications, 2015, 51, 2562-2564. 50. H. Y. Chi, H. W. Hsu, S. H. Tung and C. L. Liu, ACS Applied Materials & Interfaces, 2015, 7, 5663-5673. 51. J. Lin, W. Li, Z. Yu, M. Yi, H. Ling, L. Xie, S. Li and W. Huang, Journal of Materials Chemistry C, 2014, 2, 3738-3743. 52. Y. C. Chiu, H. S. Sun, W. Y. Lee, S. Halila, R. Borsali and W. C. Chen, Advanced Materials, 2015, 27, 6257-6264. Chapter 3 1. H. Klauk, Chemical Society Reviews, 2010, 39, 2643-2666. 2. Y. Wen, Y. Liu, Y. Guo, G. Yu and W. Hu, Chemical Reviews, 2011, 111, 3358-3406. 3. S. T. Han, Y. Zhou and V. Roy, Advanced Materials, 2013, 25, 5425-5449. 4. K. Zilberberg, J. Meyer and T. Riedl, Journal of Materials Chemistry C, 2013, 1, 4796-4815. 5. M. C. Gwinner, D. Kabra, M. Roberts, T. J. Brenner, B. H. Wallikewitz, C. R. McNeill, R. H. Friend and H. Sirringhaus, Advanced Materials, 2012, 24, 2728- 2734. 6. H. Yu, Z. Bao and J. H. Oh, Advanced Functional Materials, 2013, 23, 629-639. 7. Y. Zhou, S. T. Han, P. Sonar and V. Roy, Scientific Reports, 2013, 3, 2319. 8. Y. Wakayama, R. Hayakawa and H.-S. Seo, Science and Technology of Advanced Materials, 2014, 15, 024202. 9. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee and D. Y. Kim, Advanced Materials, 2006, 18, 3179-3183. 10. T. M. Pan and W. W. Yeh, Applied Physics Letters, 2008, 92, 173506. 11. M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voïtchovsky, F. Stellacci, A. Hirsch and M. Halik, Advanced Materials, 2010, 22, 2525-2528. 12. A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Kim, J. D. Fowler, J. K. Wassei, Y. Park, Y. Wang and J. Zou, ACS Nano, 2011, 5, 7812-7817. 13. Y. C. Chiu, T. Y. Chen, Y. Chen, T. Satoh, T. Kakuchi and W.-C. Chen, ACS Applied Materials & Interfaces, 2014, 6, 12780-12788. 14. J. Zhuang, S. T. Han, Y. Zhou and V. Roy, Journal of Materials Chemistry C, 2014, 2, 4233-4238. 15. S. Dutta and K. Narayan, Advanced Materials, 2004, 16, 2151-2155. 16. S. T. Han, Y. Zhou, Q. D. Yang, C.-S. Lee and V. A. L. Roy, Particle & Particle Systems Characterization, 2013, 30, 646-646. 17. X. Gao, C. H. Liu, X. J. She, Q. L. Li, J. Liu and S. D. Wang, Organic Electronics, 2014, 15, 2486-2491. 18. A. Salleo and R. Street, Journal of Applied Physics, 2003, 94, 471-479. 19. V. Podzorov and M. Gershenson, Physical Review Letters, 2005, 95, 016602. 20. Y. Guo, C. a. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu and Y. Liu, Advanced Materials, 2009, 21, 1954-1959. 21. M. Yi, M. Xie, Y. Shao, W. Li, H. Ling, L. Xie, T. Yang, Q. Fan, J. Zhu and W. Huang, Journal of Materials Chemistry C, 2015, 3, 5220-5225. 22. Y. Hu, G. Dong, C. Liu, L. Wang and Y. Qiu, Applied Physics Letters, 2006, 89, 072108. 23. C. Feng, T. Mei, X. Hu and N. Pavel, Organic Electronics, 2010, 11, 1713-1718. 24. J. Zhuang, W. S. Lo, L. Zhou, Q. J. Sun, C. F. Chan, Y. Zhou, S. T. Han, Y. Yan, W.-T. Wong and K.-L. Wong, Scientific Reports, 2015, 5, 14998. 25. L. A. Frolova, P. A. Troshin, D. K. Susarova, A. V. Kulikov, N. A. Sanina and S. M. Aldoshin, Chemical Communications, 2015, 51, 6130-6132. 26. J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam and B. Z. Tang, Chemical Reviews, 2015, 115, 11718-11940. 27. Y. J. Jeong, E. J. Yoo, L. H. Kim, S. Park, J. Jang, S. H. Kim, S. W. Lee and C. E. Park, Journal of Materials Chemistry C, 2016, 4, 5398-5406. 28. T. P. I. Saragi, R. Pudzich, T. Fuhrmann and J. Salbeck, Applied Physics Letters, 2004, 84, 2334-2336. 29. C. S. Chuang, F. C. Chen and H. P. D. Shieh, Organic Electronics, 2007, 8, 767-772. 30. F. C. Chen and H. F. Chang, IEEE Electron Device Letters, 2011, 32, 1740-1742. 31. H. Wang, Z. Ji, L. Shang, Y. Chen, M. Han, X. Liu, Y. Peng and M. Liu, Organic Electronics, 2011, 12, 1236-1240. 32. X. Liu, G. Dong, D. Zhao, Y. Wang, L. Duan, L. Wang and Y. Qiu, Organic Electronics, 2012, 13, 2917-2923. 33. Y. Zhou, S. T. Han, X. Chen, F. Wang, Y.-B. Tang and V. Roy, Nature Communications, 2014, 5, 4720. 34. H. Lee, S. Nam, H. Kwon, S. Lee, J. Kim, W. Lee, C. Lee, J. Jeong, H. Kim and T. J. Shin, Journal of Materials Chemistry C, 2015, 3, 1513-1520. 35. Y. S. Rim, Y. M. Yang, S. H. Bae, H. Chen, C. Li, M. S. Goorsky and Y. Yang, Advanced Materials, 2015, 27, 6885-6891. 36. L. Zhou, S. T. Han, S. Shu, J. Zhuang, Y. Yan, Q. J. Sun, Y. Zhou and V. A. L. Roy, ACS Applied Materials & Interfaces, 2017, 9, 34101-34110. 37. K. J. Baeg, D. Khim, D. Y. Kim, S. W. Jung, J. B. Koo and Y. Y. Noh, Japanese Journal of Applied Physics, 2010, 49, 05EB01. 38. Y. Zhou, S. T. Han, Y. Yan, L. B. Huang, L. Zhou, J. Huang and V. Roy, Scientific Reports, 2013, 3, 3093. 39. C. C. Shih, Y. C. Chiu, W. Y. Lee, J. Y. Chen and W. C. Chen, Advanced Functional Materials, 2015, 25, 1511-1519. 40. S. Nam, H. Han, J. Seo, M. Song, H. Kim, T. D. Anthopoulos, I. McCulloch, D. D. Bradley and Y. Kim, Advanced Electronic Materials, 2016, 2. 41. H. Han, C. Lee, H. Kim, J. Seo, M. Song, S. Nam and Y. Kim, ACS Applied Materials & Interfaces, 2017, 9, 628-635. 42. Y. J. Jeong, D.-J. Yun, S. H. Kim, J. Jang and C. E. Park, ACS Applied Materials & Interfaces, 2017, 9, 11759-11769. 43. C. Lee, S. Lee, H. Kim and Y. Kim, Advanced Electronic Materials, 2017, 3, 1700162-n/a. 44. S. Nam, J. Seo, H. Han, H. Kim, D. D. C. Bradley and Y. Kim, ACS Applied Materials & Interfaces, 2017, 9, 14983-14989. 45. H. J. Yen, J. H. Wu, W. C. Wang and G. S. Liou, Advanced Optical Materials, 2013, 1, 668-676. 46. S. W. Cheng, T. Han, T. Y. Huang, Y. H. Chang Chien, C. L. Liu, B. Z. Tang and G.-S. Liou, ACS Applied Materials & Interfaces, 2018. 47. L. Li, R. Kikuchi, M. A. Kakimoto, M. Jikei and A. Takahashi, High Performance Polymers, 2005, 17, 135-147. 48. H. J. Yen, C. J. Chen and G. S. Liou, Chemical Communications, 2013, 49, 630-632. 49. K. J. Baeg, M. Binda, D. Natali, M. Caironi and Y. Y. Noh, Advanced Materials, 2013, 25, 4267-4295. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72067 | - |
| dc.description.abstract | 本論文分為四個章節,第一章為總體序論,簡述高性能高分子、有機-無機混摻材料、聚集誘導發光及高分子記憶體元件的應用及發展。第二章中,以芳香族聚醯亞胺PI(F-ODPA)和二氧化鈦/二氧化鋯之混摻為基底,並成功製備成駐極體層和記憶體元件,用來探討混摻不同無機金屬樣化物重量比所導致的不同電性特徵。越高重量比混摻的記憶體元件被預期會有更大的記憶窗大小。此外,混摻記憶體元件因為未使用300 奈米厚度之二氧化矽介電層而能用更低的操作電壓。第三章中,將具聚集誘導發光之小分子diOMe-TPA-CN 與高分子CN-PA 和CN-PI 以不同重量比進行混摻。首先,先對混摻薄膜的光物理性質進行探討。接著再針對其光電晶體的記憶體性質和光感測器性質進行探討。因在紫外光的照射下混摻薄膜能發出黃至橘的顏色,而能激發半導體層pentacene 產生許多激發光子進一步提升記憶窗大小。另外,此光電晶體元件具有多層電流狀態,故亦是可以被應用做為紫外光感測器的良好材料之一。第四章為結論。 | zh_TW |
| dc.description.abstract | This study has been separated into four chapters. Chapter 1 is general introduction of high performance polymer, organic-inorganic hybrid materials, aggregation-induced emission, and polymer memory. In chapter 2, aromatic polyimide PI(F-ODPA) hybridizing with different weight percent of titanium oxide/zirconium oxide have been successfully prepared as electret layers and made into devices for investigating the relationship between different weight percent of inorganic content and memory properties. The higher weight percent of the hybrid memory devices are expected to possess larger memory window. Besides, the hybrid memory devices are capable of using lower applied voltage compared with conventional memory devices due to the absence of 300 nm thick SiO2. In chapter 3, AIE-active small molecule diOMe-TPACN has been blended with two AIE-active polymers CN-PA and CN-PI using different weight percent. The photophysical properties of the blending films have been fully investigated. The blending materials are further prepared into phototransistor memory and photodetector devices, in which the charges induced by photo can be trapped and detrapped successfully. The luminescent polymer blending films emit intense yellow to orange emission when excites with ultraviolet (UV) light and serves as electret layers to trap charges injected from the pentacene semiconductor layer. The memory window of the obtained blending memory devices greatly enlarges under UV irradiation compared with that without UV assistant. Also, the phototransistors acquire multilevel drain current under different incident UV intensity and are perfect materials serving as a photodetector. Finally, chapter 4 is the total conclusion of the study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:21:41Z (GMT). No. of bitstreams: 1 ntu-107-R05549028-1.pdf: 7661654 bytes, checksum: 5fc8f30231b13bb1e9187653b01c2b25 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS ·································································· i
ABSTRACT(in English) ····································································· ii ABSTRACT(in Chinese) ····································································· iii TABLE OF CONTENTS ···································································· iv LIST OF TABLES ·········································································· viii LIST OF FIGURES ··········································································· ix LIST OF SCHEMES ······································································ xvii CHAPTER 1 ····················································································· 1 1.1 High Performance Polymers · · 2 1.1.1 Preparation of High Performance Polymers ···································· 3 1.1.2 Modification of High Performance Polymers ································· 10 1.1.3 High Performance Polyimides with Different Donor/Acceptor Groups ·· 11 1.2 Functional Organic-Inorganic Hybrid Nanocomposites · 12 1.2.1 Polyimides with Hydroxyl Group ·············································· 13 1.2.2 Synthetic method of Organic-Inorganic Nanocomposites ·················· 14 1.2.3 Polyimide-Titanium Oxide Hybrids ············································ 19 1.2.4 Polyimide-Zirconium Oxide Hybrids ·········································· 24 1.2.5 Tungsten Oxide Hybrid Nanocomposites ····································· 29 1.2.6 Developments of Organic-Inorganic Hybrid Nanocomposites ············· 31 1.3 Polymer Memory Devices · · 35 1.3.1 Categories of Polymer Memory ················································ 36 1.3.2 Fundamentals of Transistor-Type Polymer Memory ························ 37 1.3.3 Mechanisms of Transistor-Type Polymer Memory ·························· 42 1.3.4 Developments of Transistor-Type Polymer Memory ························ 44 1.4 Aggregation-Induced Emission and Phototransistor Memory……………...48 1.4.1 Brief History and General Concept of Aggregation-Induced Emission ·· 48 1.4.2 Mechanisms of Aggregation-Induced Emission ······························ 49 1.4.3 Fundamentals and Mechanisms of Phototransistor Memory ··············· 50 1.4.4 Developments of Phototransistor Memory ···································· 51 1.5 Research motivation……………………………………………………………55 References ······················································································ 58 CHAPTER 2 ··················································································· 69 Abstract……………………………………………………………………………...70 2.1 Introduction……………………………………………………………………..70 2.2 Experimental Section…………………………………………………………...72 2.2.1 Materials ··········································································· 72 2.2.2 Polymer Synthesis ································································ 72 2.2.3 Measurement of Polymer Properties ··········································· 72 2.2.4 Preparation of Polyimide/Metal Oxide Hybrid Electrets ···················· 73 2.2.5 Preparation of Transistor-Type Hybrid Memory Devices ·················· 74 2.2.6 Measurement of Transistor-Type Hybrid Memory Devices ················ 75 2.2.7 Morphology Characterization ··················································· 76 2.2.8 Molecular Simulation ···························································· 76 2.3 Results and Discussion………………………………………………………….77 2.3.1 Polymer Synthesis and Characterization ······································ 77 2.3.2 Preparation and Characterization of Polyimide/Metal Oxide Hybrid Electrets ························································································· 78 2.3.3 Memory Characteristics of Transistor-Type Hybrid Memory Devices ··· 82 2.3.4 Switching Mechanism of Transistor-Type Hybrid Memory Devices ····107 2.4 Conclusions…………………………………………………………………….111 References………………………………………………………………………….113 CHAPTER 3 ··················································································117 Abstract…………………………………………………………………………….118 3.1 Introduction……………………………………………………………………118 3.2 Experimental Section………………………………………………………….122 3.2.1 Materials ··········································································122 3.2.2 Polymer Synthesis ·······························································123 3.2.3 Measurement of Polymer Properties ··········································125 3.2.4 Preparation of Phototransistor Memory Devices ····························125 3.2.5 Measurement of Phototransistor Memory Devices ·························126 3.3 Results and Discussion127 3.3.1 Polymer Synthesis and Characterization ·····································127 3.3.2 Photophsyical Properties of Polymer Electret and Pentacene Films ·····128 3.3.3 Memory Characteristics of Phototransistor Memory Devices ·············139 3.3.4 Switching Mechanism of Phototransistor Memory Devices ···············149 3.3.5 Properties of Photodetector ·····················································150 3.4 Conclusions…………………………………………………………………….157 References………………………………………………………………………….158 CHAPTER 4 ··················································································162 APPENDIX ···················································································165 LIST OF PUBLICATIONS ·······························································166 Table 1.1 Commercially available aromatic polyamides. · 6 Table 1.2 Comparisons of optical materials. · · 13 Table 1.3 Electronegativity (χ), coordination number (N), and degree of unsaturation (N - Z) of some metals (Z = 4). · · 18 Table 1.4 The reaction constant K of tetralkoxysilane in acid hydrolysis. · 18 Table 2.1 Threshold voltage and memory window of PI(F-ODPA) and its TiO2 sol-gel hybrid memory devices. · · · 86 Table 2.2 Threshold voltage and memory window of PI(F-ODPA) and its ZrO2 sol-gel hybrid memory devices. · · · 91 Table 3.1 Inherent Viscosity and Molecular Weights of Polymers. · 128 Table 3.2 Optical properties of CN-PA and its blendings. · 133 Table 3.3 Optical properties of CN-PI and its blendings. · 135 Table 3.4 Optical properties of diOMe-TPA-CN. · · 137 Table 3.5 Optical properties and memory characteristics of CN-PA and its blendings. · · · · 141 Table 3.6 Optical properties and memory characteristics of CN-PI and its blendings. · · · · 143 Figure 1.1 Schematic of in situ synthesis of metal nanoparticles in a polymer matrix. · · · · 16 Figure 1.2 Ex situ synthesis schemes for the preparation of nanocomposites from blending route and in situ polymerization process. · · 17 Figure 1.3 Relationship of sol-gel reaction with acidity and alkalinity. · 19 Figure 1.4 Thickness and refractive index of the sol-gel titanium oxide film at different annealing temperatures, green dots are thickness, and purple triangles are refractive index at 632.8 nm. · · · 20 Figure 1.5 Semi-alicyclic sulfur-containing PI and silica-modified anatase TiO2. · 21 Figure 1.6 Left: The reaction route for polyimide and titanium oxide precursors; Right: Transmittance UV-visible spectra of 6FPI hybrid thin films (thickness: 150–650 nm). · · · · 22 Figure 1.7 Left: The reaction route for polyimide and titania precursors; Right: Transmittance UV-visible spectra of 2,3-PHIc hybrid thin films (thickness: 150–650 nm). · · · 23 Figure 1.8 (a) Structure of the BPE-PTCDI based OFET memory device. (b) Structures of the polyimide which are used as dielectric layer. · · 24 Figure 1.9 Optical transmission spectra of F-6FTiX hybrid thick films (a), (c) (thickness: ~ 19 μm); and thin films (b), (d) (thickness: 500–600 nm). The inset figure shows the transmission spectra of hybrid thick and thin films in 450–700 nm of wavelength. · · · 26 Figure 1.10 Chemical structures of 4ATA-PI, 4ATA-PI/TiO2, and 4ATA-PI/ZrO2, and the schematic diagram of the memory device consisting of a polymer thin film sandwiched between ITO bottom and Al top electrodes. · 27 Figure 1.11 Current-voltage (I-V) characteristics of the ITO/4ATA-PI/ZrO2 hybrid material (50 ± 3 nm)/Al memory device: (a) and (b) 4ATA-PIZr5, (c) 4ATA-PIZr7, (d) 4ATA-PIZr10, (e) 4ATA-PIZr15, (f) 4ATA-PIZr30, and (g) 4ATA-PIZr50. · 28 Figure 1.12 Schematic formation of PPy-WO3 hybrid nanocomposites. · 29 Figure 1.13 Selectivity study of PPy, WO3 and PPy-WO3 (50%) for different test gases. · · · · 30 Figure 1.14 Schematic illustration of the preparation procedure of a flexible electrochromic SC electrode. · · · 31 Figure 1.15 Scheme of light scattering loss for traditional composites and nanocomposites.· · · 32 Figure 1.16 Schematic of a display with protective and refractive index control polymer over layer films. · · · 32 Figure 1.17 (a) Escape cone of an LED without and with encapsulation (b) light extraction efficiency ratio for GaN and GaP as a function of the encapsulant refractive index. · · · 34 Figure 1.18 Classification of polymer memory devices. · 36 Figure 1.19 Schematic configuration of OFET memory devices. · 38 Figure 1.20 Id1/2 vs. Vg curve under applied voltage bias that can determine the memory window and memory ratio. · · · 40 Figure 1.21 Retention time of OFET memory devices.· · 41 Figure 1.22 Endurance cycles of OFET memory devices. · 41 Figure 1.23 P-type OFET memory devices operation: (a) flat-band condition, (b) electron trapping (PGM mode), (c) electron detrapping and recombination with hole (ERS mode), (d) hole trapping (ERS mode), and (e) hole detrapping and recombination with electron (PGM mode). · · · 43 Figure 1.24 Molecular structures of the studied PI electrets and the deviceconfiguration of the pentacene-based OFET memory devices. · 45 Figure 1.25 Schematic configuration of OFET memory device based on BPE-PTCDI thin film and chemical structures of polyimide electrets. · 46 Figure 1.26 Schematic illustration of the studied n-type OFET memory devices and the molecular structures of the studied PIs. · · 47 Figure 1.27 Transfer characteristics of the studied flexible OFET memory device. 47 Figure 1.28 Proposed principal diagram of device with photoluminesence film operated at (a) programming and (b) erasing modes with assistance of UV light. The arrows in violet and red color represent partial UV light and red emission by photoluminesence film. · · · 51 Figure 1.29 (a) Schematic diagram of the photo-reactive memory device and (b) the molecular structure of charge trapping photo-reactive Eu(tta)3ppta complex. · 52 Figure 1.30 Schematic diagram of a transistor based optical sensor device. The output drain-source current (IDS) is decided by the incident light energy (hv). Inside the lower gray box is the schematic drawing of the optical sensing and data storage mechanisms of current transistor optical memory device. Drawing along the x-axis is the operating time sequence of the device, and y-axis represents the variation of incident light intensity. · · · 53 Figure 1.31 Two forms of 6FDA-DBA-SP. Spiropyran groups can reversibly switch the structure between ring-closed and ring-opened forms according to light exposure with different wavelengths, or dark. · · 54 Figure 1.32 Schematic illustration of a SP-OFET used in this study. · 55 Figure 1.33 Schematic illustration of PI(F-ODPA) sol-gel hybrids used in this study. · · · · 56 Figure 1.34 Schematic illustration of triphenylamine-based AIE-active materials used in this study. · · · 57 Figure 2.1 Device fabrication procedure of the hybrid memory device. · 75 Figure 2.2 Schematic configuration of the hybrid memory device and chemical structures of the charge trapping layer and semiconducting layer. · 77 Figure 2.3 (a) Thickness and (b) surface deviation of PI(F-ODPA)Ti20 on Si substrate using α-step as measuring instrument. · · 79 Figure 2.4 AFM images of PI(F-ODPA) and its sol-gel hybrid films spin-coated on Si substrate. · · · 80 Figure 2.5 AFM images of semiconducting pentacene grown by thermal evaporation on PI(F-ODPA) and its sol-gel hybrid films. · · 81 Figure 2.6 Shifts in transfer curves for the hybrid memory devices with (a) pure PI(F-ODPA), (b) PI(F-ODPA)Ti5, (c) PI(F-ODPA)Ti10, (d) PI(F-ODPA)Ti20, and (e) PI(F-ODPA)Ti30 as polymer electrets, where -40 V, 2 s is the programming bias and the reading drain voltage is set at -30 V. · · 84 Figure 2.7 Shifts in root square of drain current versus gate voltage for the hybrid memory devices with (a) pure PI(F-ODPA), (b) PI(F-ODPA)Ti5, (c) PI(F-ODPA)Ti10, (d) PI(F-ODPA)Ti20, and (e) PI(F-ODPA)Ti30 as polymer electrets, where -40 V, 2 s is the programming bias and the reading drain voltage is set at -30 V. The intersection of the tangent line with x axis is defined as threshold voltage. · 85 Figure 2.8 Shifts in transfer curves for the hybrid memory devices with (a) pure PI(F-ODPA), (b) PI(F-ODPA)Zr5, (c) PI(F-ODPA)Zr10, (d) PI(F-ODPA)Zr20, and (e) PI(F-ODPA)Zr30 as polymer electrets, where -40 V, 2 s is the programming bias and the reading drain voltage is set at -30 V. · · 89 Figure 2.9 Shifts in root square of drain current versus gate voltage for the hybrid memory devices with (a) pure PI(F-ODPA), (b) PI(F-ODPA)Zr5, (c) PI(F-ODPA)Zr10, (d) PI(F-ODPA)Zr20, and (e) PI(F-ODPA)Zr30 as polymer electrets,where -40 V, 2 s is the programming bias and the reading drain voltage is set at -30 V. The intersection of the tangent line with x axis is defined as threshold voltage. · 90 Figure 2.10 On/off ratio of the corresponding PI(F-ODPA) and its (a) TiO2 (b) ZrO2 sol-gel hybrids as a function of weight percent. · · 93 Figure 2.11 log10(on/off ratio) of the corresponding PI(F-ODPA) and its (a) TiO2 (b) ZrO2 sol-gel hybrids as a function of weight percent. · · 94 Figure 2.12 Retention time of the hybrid memory device with (a) PI(F-ODPA)Ti20 (b) PI(F-ODPA)Zr20 as electret at Vg = 0 V. ············································ 96 Figure 2.13 Proof of volatile and nonerasable memory characteristics of the hybrid memory device with (a) PI(F-ODPA)Ti20 (b) PI(F-ODPA)Zr20 as electret, where -40 V, 2 s is the programming bias and the reading drain voltage is set at -30 V, (c) +40 V, 2 s (d) no bias voltage to erase. ·························································· 99 Figure 2.14 IdVd of the hybrid memory device with (a) PI(F-ODPA)Ti20 (b) PI(F-ODPA)Zr20 as electret. · · · 101 Figure 2.15 (a) Memory window of the corresponding PI(F-ODPA) and its TiO2 and ZrO2 sol-gel hybrids as a function of weight percent (b) Energy levels of the materials used in the research. · · · 103 Figure 2.16 Shifts in transfer curves for the hybrid memory devices with (a) (b) PI(F-ODPA)Ti5, (c) (d) PI(F-ODPA)Ti10, and (e) (f) PI(F-ODPA)Ti20 as polymer electrets, where (a) (c) (e) -40 V, 2 s, (b) (d) (f) -20 V, 2 s is the programming bias and the reading drain voltage is set at -30 V. · · 105 Figure 2.17 Overlay of transfer curves for the hybrid memory devices with (a) PI(F-ODPA)Ti5, (b) PI(F-ODPA)Ti10, and (c) PI(F-ODPA)Ti20 as polymer electrets, where -40 V, 2 s and -20 V, 2 s are the programming bias and the reading drain voltage is set at -30 V. · · · 107 Figure 2.18 Operation mechanism for the initial curve scan of the hybrid memory device. ··························································································108 Figure 2.19 Operation mechanism for the programming process of the hybrid memory device. ··························································································109 Figure 2.20 Operation mechanism for the programming curve scan of the hybrid memory device. ···············································································110 Figure 2.21 Operation mechanism for the volatile characteristics of the hybrid memory device. ··························································································111 Figure 3.1 Schematic configuration of the phototransistor memory device and chemical structures of the charge trapping layer and semiconducting layer. · 121 Figure 3.2 Device fabrication procedure of the phototransistor memory device. · 126 Figure 3.3 UV-vis absorption spectra of (a) diOMe-TPA-CN (b)50 nm thick pentacene film. PL spectra of (c) CN-PA (d) CN-PI and its blending films. Excitation wavelength: 365 nm. · · · 131 Figure 3.4 PL spectra of (a) CN-PA (b) CN-PA/diOMe-TPA-CN1 (c) CN-PA/diOMe-TPA-CN2 (d) CN-PA/diOMe-TPA-CN5 (e) CN-PA/diOMe-TPA-CN10 (f) CN-PA/diOMe-TPA-CN20 and the associated photos taken under 365 nm UV irradiation. · · · 132 Figure 3.5 PL spectra of (a) CN-PI (b) CN-PI/diOMe-TPA-CN1 (c) CN-PI/diOMe-TPA-CN2 (d) CN-PI/diOMe-TPA-CN5 (e) CN-PI/diOMe-TPA-CN10 (f) CN-PI/diOMe-TPA-CN20 and the associated photos taken under 365 nm UV irradiation…………………………………………………………………………...134 Figure 3.6 PL spectrum of diOMe-TPA-CN excited under (a) 365 nm (b) 436 nm (c) 476 nm illumination. · · · 137 Figure 3.7 PL spectra of (a) pristine CN-PA/diOMe-TPA-CN5 and CN-PA/diOMe-TPA-CN5/pentacene bilayer film (b) pristine CN-PI/diOMe-TPA-CN5 and CN-PI/diOMe-TPA-CN5/pentacene bilayer film under 365 nm UV irradiation. · 138 Figure 3.8 Memory characteristics for phototransistor memory devices with (a) CN-PA (b) CN-PA/diOMe-TPA-CN1 (c) CN-PA/diOMe-TPA-CN2 (d) CN-PA/diOMe-TPA-CN5 (e) CN-PA/diOMe-TPA-CN10 (f) CN-PA/diOMe-TPA-CN20 as electrets with and without UV assistant, where drain voltage was fixed at Vg = -60 V. · 140 Figure 3.9 Memory characteristics for phototransistor memory devices with (a) CN-PI (b) CN-PI/diOMe-TPA-CN1 (c) CN-PI/diOMe-TPA-CN2 (d) CN-PI/diOMe-TPA-CN5 (e) CN-PI/diOMe-TPA-CN10 (f) CN-PI/diOMe-TPA-CN20 as electrets with and without UV assistant, where drain voltage was fixed at Vg = -100 V. · 142 Figure 3.10 Memory characteristics for phototransistor memory devices with (a) CN-PA/diOMe-TPA-CN5 (b) CN-PI/diOMe-TPA-CN5 as electrets using lower applied voltage with and without UV assistant, where drain voltage was fixed at Vg = -60 V and -100 V, respectively. · · · 145 Figure 3.11 Retention time for phototransistor memory devices with (a) CN-PA/diOMe-TPA-CN5 (b) CN-PI/diOMe-TPA-CN5 as electrets with on state under UV and off state in dark, where gate voltage was fixed at Vg = 45 V and 5 V, respectively. · · · · 147 Figure 3.12 WRER cycles for phototransistor memory devices with (a) CN-PA/diOMe-TPA-CN5 (b) CN-PI/diOMe-TPA-CN5 as electrets. · 148 Figure 3.13 Operation mechanism for the organic phototransistor memory device based on polymer and polymer blending electret. · · 150 Figure 3.14 Shift of transfer curves for the organic phototransistor based on (a) CN-PA/diOMe-TPA-CN5 (b) CN-PI/diOMe-TPA-CN5 electret under different intensity of incident UV irradiation.· · · 152 Figure 3.15 Id curve fitting of the organic phototransistor based on (a) CN-PA/diOMe-TPA-CN5 (at Vg = 70 V) (b) CN-PI/diOMe-TPA-CN5 (at Vg = 10 V) electret at various UV intensities. · · · 153 Figure 3.16 Photoresponsivity and Photosensitivity values of the organic phototransistor based on (a) CN-PA/diOMe-TPA-CN5 (at Vg = 70 V) (b) CN-PI/diOMe-TPA-CN5 (at Vg = 10 V) electret under different intensity of incident UV irradiation. · · · 156 Scheme 1.1 Two-step polymerization method of aromatic polyimides synthesis. · 5 Scheme 1.2 Direct polycondensation method. · · 8 Scheme 1.3 Low-temperature method. · · 8 Scheme 1.4 Preparation of polyethers. ····················································· 10 Scheme 1.5 The sol-gel reaction of the hybrid synthesis. · 14 Scheme 1.6 Sol-gel synthesis of organic-inorganic nanocomposites. · 15 Scheme 1.7 Synthesis of semi-alicyclic polyimides. · · 21 Scheme 1.8 Synthesis and structures of the poly(o-hydroxy-imide)s and preparation of PI/zirconia hybrids. · · · 25 Scheme 2.1 Synthesis and structures of PI(F-ODPA) and its sol-gel hybrids. · 73 Scheme 3.1 Synthesis routes of diOMe-TPA-CN. · · 123 Scheme 3.2 Synthesis method of CN-PA. · · 124 Scheme 3.3 Synthesis method of CN-PI. · · 124 | |
| dc.language.iso | en | |
| dc.subject | 光電晶體 | zh_TW |
| dc.subject | 有機-無機混摻材料 | zh_TW |
| dc.subject | 電晶體式記憶體 | zh_TW |
| dc.subject | 聚集誘導發光混摻材料 | zh_TW |
| dc.subject | organic-inorganic hybrid materials | en |
| dc.subject | transistor memory | en |
| dc.subject | AIE-active blending materials | en |
| dc.subject | phototransistor | en |
| dc.title | 高性能高分子於新穎場效應電晶體式記憶體之設計與製備 | zh_TW |
| dc.title | Design and Preparation of Novel Field-Effect Transistor
Memory Based on High Performance Polymers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭勝輝(Sheng-Huei Hsiao),劉振良(Cheng-Liang Liu),張嘉文(Cha-Wen Chang),龔宇睿(Yu-Ruei Kung) | |
| dc.subject.keyword | 電晶體式記憶體,有機-無機混摻材料,聚集誘導發光混摻材料,光電晶體, | zh_TW |
| dc.subject.keyword | transistor memory,organic-inorganic hybrid materials,AIE-active blending materials,phototransistor, | en |
| dc.relation.page | 166 | |
| dc.identifier.doi | 10.6342/NTU201704342 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
