請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72048
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王宗興(Tsung-Shing Wang) | |
dc.contributor.author | Wei-Ting Chang | en |
dc.contributor.author | 張瑋庭 | zh_TW |
dc.date.accessioned | 2021-06-17T06:20:46Z | - |
dc.date.available | 2023-08-21 | |
dc.date.copyright | 2018-08-21 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-19 | |
dc.identifier.citation | References
1. Falkinham, J. O.; Wall, T. E.; Tanner, J. R.; Tawaha, K.; Alali, F. Q.; Li, C.; Oberlies, N. H., Proliferation of Antibiotic-Producing Bacteria and Concomitant Antibiotic Production as the Basis for the Antibiotic Activity of Jordan's Red Soils. Appl. Environ. Microbiol. 2009, 75 (9), 2735-2741. 2. Aminov, R. I., A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. Front Microbiol 2010, 1, 134. 3. Armelagos, G. J., Disease in Ancient Nubia. Science 1969, 163 (3864), 255. 4. Megan, C.; El, M.; C., A., Fluorochrome labelling in roman period skeletons from dakhleh oasis, Egypt. Am. J. Phys. Anthropol. 1989, 80 (2), 137-143. 5. Bellamy, W. D.; Klimek, J. W., Some Properties of Penicillin-resistant Staphylococci. J. Bacteriol. 1948, 55 (2), 153-160. 6. Ventola, C. L., The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics 2015, 40 (4), 277-283. 7. Higgins, P. G.; Dammhayn, C.; Hackel, M.; Seifert, H., Global spread of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2010, 65 (2), 233-238. 8. Livermore, D. M.; Woodford, N., The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 2006, 14 (9), 413-420. 9. Gillespie, S. H., Evolution of Drug Resistance in Mycobacterium tuberculosis: Clinical and Molecular Perspective. Antimicrob. Agents Chemother. 2002, 46 (2), 267-274. 10. Hochstein, F. A.; Stephens, C. R.; Conover, L. H.; Regna, P. P.; Pasternack, R.; Gordon, P. N.; Pilgrim, F. J.; Brunings, K. J.; Woodward, R. B., The Structure of Terramycin1,2. J. Am. Chem. Soc. 1953, 75 (22), 5455-5475. 11. Coronagraph Mounts Done. The Science News-Letter 1952, 62 (6), 83-83. 12. Hammerum, A. M.; Heuer, O. E., Human Health Hazards from Antimicrobial-Resistant Escherichia coli of Animal Origin. Clin. Infect. Dis. 2009, 48 (7), 916-921. 13. Rex, E. H.; Susan, F. K., Cephalosporins in Veterinary Medicine - Ceftiofur Use in Food Animals. Curr Top Med Chem 2002, 2 (7), 717-731. 14. Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Herman, L.; Haesebrouck, F.; Butaye, P., Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol. Rev. 2010, 34 (3), 295-316. 15. Brown, N. G.; Pennington, J. M.; Huang, W.; Ayvaz, T.; Palzkill, T., Multiple global suppressors of protein stability defects facilitate the evolution of extended-spectrum TEM β-lactamases. J. Mol. Biol 2010, 404 (5), 832-846. 16. Bush, K.; Jacoby, G. A.; Medeiros, A. A., A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39 (6), 1211-1233. 17. Bush, K.; Jacoby, G. A., Updated Functional Classification of β-Lactamases. Antimicrob. Agents Chemother. 2010, 54 (3), 969-976. 18. Drawz, S. M.; Bonomo, R. A., Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 2010, 23 (1), 160-201. 19. Leonard, D. A.; Bonomo, R. A.; Powers, R. A., Class D β-Lactamases: A Reappraisal after Five Decades. Acc. Chem. Res. 2013, 46 (11), 2407-2415. 20. Queenan, A. M.; Bush, K., Carbapenemases: the Versatile β-Lactamases. Clin. Microbiol. Rev. 2007, 20 (3), 440-458. 21. Group, N. H. W.; Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J. A.; Bonazzi, V.; McEwen, J. E.; Wetterstrand, K. A.; Deal, C.; Baker, C. C.; Di Francesco, V.; Howcroft, T. K.; Karp, R. W.; Lunsford, R. D.; Wellington, C. R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A. R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M. H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M., The NIH Human Microbiome Project. Genome Res. 2009, 19 (12), 2317-2323. 22. Turnbaugh, P. J.; Ley, R. E.; Hamady, M.; Fraser-Liggett, C. M.; Knight, R.; Gordon, J. I., The human microbiome project. Nature 2007, 449 (7164), 804-810. 23. Ley, R. E.; Peterson, D. A.; Gordon, J. I., Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124 (4), 837-848. 24. Mendes, R.; Raaijmakers, J. M., Cross-kingdom similarities in microbiome functions. ISME J 2015, 9 (9), 1905-1907. 25. Wang, B.; Yao, M.; Lv, L.; Ling, Z.; Li, L., The Human Microbiota in Health and Disease. Engr. 2017, 3 (1), 71-82. 26. Koppel, N.; Maini Rekdal, V.; Balskus, E. P., Chemical transformation of xenobiotics by the human gut microbiota. Science 2017, 356 (6344), 1-11. 27. Bertrand, E.; Allen, A., Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton. Front Microbiol 2012, 3 (375), 1-16. 28. Fang, H.; Kang, J.; Zhang, D., Microbial production of vitamin B(12): a review and future perspectives. Microb. Cell Fact. 2017, 16, 1-14. 29. Buffie, C. G.; Bucci, V.; Stein, R. R.; McKenney, P. T.; Ling, L.; Gobourne, A.; No, D.; Liu, H.; Kinnebrew, M.; Viale, A.; Littmann, E.; van den Brink, M. R. M.; Jenq, R. R.; Taur, Y.; Sander, C.; Cross, J. R.; Toussaint, N. C.; Xavier, J. B.; Pamer, E. G., Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2014, 517, 205. 30. Fehér, C.; Soriano, A.; Mensa, J., A Review of Experimental and Off-Label Therapies for Clostridium difficile Infection. Infectious Diseases and Therapy 2017, 6 (1), 1-35. 31. Thomas, H., Tooling up for microbiota research. Nature Reviews Gastroenterology &Amp; Hepatology 2017, 14, 326. 32. Olsen, G. J.; Lane, D. J.; Giovannoni, S. J.; Pace, N. R.; Stahl, D. A., Microbial Ecology and Evolution: A Ribosomal RNA Approach. Annual Review of Microbiology 1986, 40 (1), 337-365. 33. Shin, J.; Lee, S.; Go, M.-J.; Lee, S. Y.; Kim, S. C.; Lee, C.-H.; Cho, B.-K., Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scientific Reports 2016, 6, 29681. 34. Moter, A.; Göbel, U. B., Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. Journal of Microbiological Methods 2000, 41 (2), 85-112. 35. Rigottier-Gois, L.; Le Bourhis, A.-G.; Geneviève, G.; Rochet, V.; Doré, J., Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiology Ecology 2003, 43 (2), 237-245. 36. Rosselli, R.; Romoli, O.; Vitulo, N.; Vezzi, A.; Campanaro, S.; de Pascale, F.; Schiavon, R.; Tiarca, M.; Poletto, F.; Concheri, G.; Valle, G.; Squartini, A., Direct 16S rRNA-seq from bacterial communities: a PCR-independent approach to simultaneously assess microbial diversity and functional activity potential of each taxon. Scientific Reports 2016, 6, 32165. 37. Woese, C. R., Bacterial evolution. Microbiological Reviews 1987, 51 (2), 221-271. 38. Rintala, A.; Pietilä, S.; Munukka, E.; Eerola, E.; Pursiheimo, J.-P.; Laiho, A.; Pekkala, S.; Huovinen, P., Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor. Journal of Biomolecular Techniques : JBT 2017, 28 (1), 19-30. 39. Alcon-Giner, C.; Caim, S.; Mitra, S.; Ketskemety, J.; Wegmann, U.; Wain, J.; Belteki, G.; Clarke, P.; Hall, L. J., Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants. BMC Genomics 2017, 18, 841. 40. Liu, R.; Teo, W.; Tan, S.; Feng, H.; Padmanabhan, P.; Xing, B., Metallic nanoparticles bioassay for Enterobacter cloacae P99 beta-lactamase activity and inhibitor screening. Analyst 2010, 135 (5), 1031-1036. 41. Zheng, X.; Sallum, U. W.; Verma, S.; Athar, H.; Evans, C. L.; Hasan, T., Exploiting a bacterial drug-resistance mechanism: a light-activated construct for the destruction of MRSA. Angew. Chem. Int. Ed. Engl. 2009, 48 (12), 2148-2151. 42. Xu, C.; Xing, B.; Rao, J., A self-assembled quantum dot probe for detecting beta-lactamase activity. Biochem. Biophys. Res. Commun. 2006, 344 (3), 931-935. 43. Shao, Q.; Zheng, Y.; Dong, X.; Tang, K.; Yan, X.; Xing, B., A covalent reporter of beta-lactamase activity for fluorescent imaging and rapid screening of antibiotic-resistant bacteria. Chemistry 2013, 19 (33), 10903-10910. 44. Jiang, T.; Liu, R.; Huang, X.; Feng, H.; Teo, W.; Xing, B., Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles. Chem. Commun. (Camb.) 2009, (15), 1972-1974. 45. Shao, Q.; Jiang, T.; Ren, G.; Cheng, Z.; Xing, B., Photoactivable bioluminescent probes for imaging luciferase activity. Chem. Commun. (Camb.) 2009, (27), 4028-4030. 46. Shao, Q.; Xing, B., Enzyme responsive luminescent ruthenium(II) cephalosporin probe for intracellular imaging and photoinactivation of antibiotics resistant bacteria. Chem. Commun. (Camb.) 2012, 48 (12), 1739-1741. 47. Gao, W.; Xing, B.; Tsien, R. Y.; Rao, J., Novel fluorogenic substrates for imaging beta-lactamase gene expression. J. Am. Chem. Soc. 2003, 125 (37), 11146-11147. 48. Xing, B.; Khanamiryan, A.; Rao, J., Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. J Am Chem Soc 2005, 127 (12), 4158-9. 49. Ning, X.; Lee, S.; Wang, Z.; Kim, D.; Stubblefield, B.; Gilbert, E.; Murthy, N., Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 2011, 10 (8), 602-607. 50. Oldham, M. L.; Chen, S.; Chen, J., Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (45), 18132-18137. 51. Crosa, J. H.; Walsh, C. T., Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 2002, 66 (2), 223-+. 52. Raymond, K. N.; Dertz, E. A.; Kim, S. S., Enterobactin: An archetype for microbial iron transport. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (7), 3584-3588. 53. Harris, W. R.; Carrano, C. J.; Cooper, S. R.; Sofen, S. R.; Avdeef, A. E.; Mcardle, J. V.; Raymond, K. N., Coordination Chemistry of Microbial Iron Transport Compounds .19. Stability-Constants and Electrochemical Behavior of Ferric Enterobactin and Model Complexes. J Am Chem Soc 1979, 101 (20), 6097-6104. 54. Loomis, L. D.; Raymond, K. N., Solution Equilibria of Enterobactin and Metal Enterobactin Complexes. Inorg Chem 1991, 30 (5), 906-911. 55. Newton, S. M. C.; Igo, J. D.; Scott, D. C.; Klebba, P. E., Effect of loop deletions on the binding and transport of ferric enterobactin by FepA. Mol. Microbiol. 1999, 32 (6), 1153-1165. 56. Buchanan, S. K.; Smith, B. S.; Venkatramani, L.; Xia, D.; Esser, L.; Palnitkar, M.; Chakraborty, R.; van der Helm, D.; Deisenhofer, J., Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 1999, 6 (1), 56-63. 57. Zhang, D.; Wang, J.; Xu, D., Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release 2016, 229, 130-139. 58. Zhang, D.; Wang, J.; Xu, D., Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. Journal of Controlled Release 2016, 229, 130-139. 59. Okuyama, M.; Laman, H.; Kingsbury, S. R.; Visintin, C.; Leo, E.; Eward, K. L.; Stoeber, K.; Boshoff, C.; Williams, G. H.; Selwood, D. L., Small-molecule mimics of an alpha-helix for efficient transport of proteins into cells. Nat. Methods 2007, 4 (2), 153-159. 60. Milletti, F., Cell-penetrating peptides: classes, origin, and current landscape. Drug Discovery Today 2012, 17 (15), 850-860. 61. Stalmans, S.; Wynendaele, E.; Bracke, N.; Gevaert, B.; D’Hondt, M.; Peremans, K.; Burvenich, C.; De Spiegeleer, B., Chemical-Functional Diversity in Cell-Penetrating Peptides. PLOS ONE 2013, 8 (8), e71752. 62. Wesolowski, D.; Tae, H. S.; Gandotra, N.; Llopis, P.; Shen, N.; Altman, S., Basic peptide-morpholino oligomer conjugate that is very effective in killing bacteria by gene-specific and nonspecific modes. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (40), 16582-16587. 63. Saab, A. N.; Dittert, L. W.; Hussain, A. A., Isomerization of cephalosporin esters: implications for the prodrug ester approach to enhancing the oral bioavailabilities of cephalosporins. J Pharm Sci 1988, 77 (10), 906-907. 64. Saab, A. N.; Hussain, A. A.; Patel, I. H.; Dittert, L. W., Synthesis and mechanisms of decomposition of some cephalosporin prodrugs. J. Pharm. Sci 1990, 79 (9), 802-805. 65. Sugioka, T.; Asano, T.; Chikaraishi, Y.; Suzuki, E.; Sano, A.; Kuriki, T.; Shirotsuka, M.; Saito, K., Stability and degradation pattern of cefpirome (HR 810) in aqueous solution. Chem. Pharm. Bull. 1990, 38 (7), 1998-2002. 66. Haddleton, D. M.; Ohno, K., Well-defined oligosaccharide-terminated polymers from living radical polymerization. Biomacromolecules 2000, 1 (2), 152-156. 67. Lee Albert, A.; Chen Yi-Chen, S.; Ekalestari, E.; Ho, S.-Y.; Hsu, N.-S.; Kuo, T.-F.; Wang Tsung-Shing, A., Facile and Versatile Chemoenzymatic Synthesis of Enterobactin Analogues and Applications in Bacterial Detection. Angew. Chem. Int. Ed. Engl. 2016, 55 (40), 12338-12342. 68. Gantt, R. W.; Peltier-Pain, P.; Cournoyer, W. J.; Thorson, J. S., Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions. Nat. Chem. Biol. 2011, 7 (10), 685-691. 69. Fischbach, M. A.; Lin, H. N.; Liu, D. R.; Walsh, C. T., In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (3), 571-576. 70. Guignard, B.; Entenza, J. M.; Moreillon, P., β-lactams against methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 2005, 5 (5), 479-489. 71. Mohebbi, M.; Salehi, P.; Bararjanian, M.; Aliahmadi, A.; Safavi-Sohi, R.; Ghasemi, J. B., Synthesis, antibacterial activity, and CoMFA study of new 1,2,3-triazolyl 7-carboxamidodesacetoxy cephalosporanic acid derivatives. Med Chem Res 2014, 23 (10), 4531-4541. 72. “b-lactam working rough draft not ready for prime time”. TMedWeb of Tulan University; http://tmedweb.tulane.edu/pharmwiki/doku.php/beta_lactam_working_rough_draft_-_not_ready_for_prime_time 73. Liu X., “Borrowing Weapons From Friendly Bacteria to Fight Antibiotic Resistance”. Signal to Noise Magazine, 2016 (Sept. 28); http://www.signaltonoisemag.com/allarticles/2016/9/28/borrowing-weapons-from-friendly-bacteria-to-fight-antibiotic-resistance 74. “16S rRNA sequencing protocol”. NGS service, WELGENE, https://www.welgene.com.tw/service/ngs/NGS_meta_16s_rdna 75. Organization, T. W. H. Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72048 | - |
dc.description.abstract | 多重抗藥性革蘭氏陰性細菌成為公共衛生領域的嚴重威脅。了解抗性細菌和寄主微生物群如何相互作用可以促進新抗生素的開發。但是,迄今為止,由於缺乏成像工具,它們的相互作用仍不清楚。在這裡,我們正在開發熒光探針來追蹤它們在宿主體內的空間和時間關係。
在我們的探針Ceph-couCF3-GU中,螢光基團香豆素衍生物以頭孢菌素保護,並與導向單元相連,其功能分別為偵測具有抗藥性細菌和增強細菌靶向選擇性。在去除β-內酰胺酶的反應後,可以開啟螢光團報告耐藥細菌內的β-內酰胺酶活性。通過特定激發波長藉此分辨水解產物,並通過螢光監測β-內酰胺酶活性。我們的前探針Ceph-couCF3-alkyne可以在細菌體內測定中水解並釋放出螢光,在沒有導向單元時,前探針無法利用穿膜蛋白穿越細胞膜,但在臨床菌株中,可以利用擴散的方式穿膜。此外,在IVIS(體內光學成像系統)中,我們的前探針顯示低螢光檢測極限(20 uM探針與20 nM β-內酰胺酶),證明了我們的探針在小鼠模型中體內即時檢測的潛力。接著,利用點擊化學將被用於在前探針上綴合引導單元,包括腸細菌素類似物(鐵響應單位),β-麥芽糖糊精(一般營養單位)或細胞穿透肽(CPPs,通用穿透單位)以產生最終的Ceph-couCF3-GU探針,而我們的最終探針Ceph-couCF3-GU,在不同的臨床菌中,可以利用擴散能力的不同而有不同的選擇性,進而達到選擇性偵測細菌的目的。 | zh_TW |
dc.description.abstract | Multiple resistant Gram-negative bacteria became serious threats in public health. Understanding how resistant bacteria and host microbiota interact could facilitate the development of new antibiotics. However, up to date, their interaction remains unclear due to the lack of imaging tools. Here, we are developing fluorogenic probes to track their spatial and temporal relationship inside hosts.
In our probe Ceph-couCF3-GU, coumarin is capped with substrates, such as cephalosporin, and linked to guiding units, whose functions are to report specific resistance and to enhance bacterial targeting selectivity, respectively. Upon decapping reaction of β-lactamase, the fluorophore can be turned on to report β-lactamase activity inside resistant bacteria. Through specifically exciting the hydrolyzed product, β-lactamase activity can be monitored by fluorescence. Our pre-probe, Ceph-couCF3-alkyne, can be turned on but cell-impermeable in the cell-based assay. And then, in the clinical resistance bacteria, our pre-probe can diffuse through outer membrane. Moreover, in IVIS (in vivo optical imaging system), our pre-probe showed low fluorescence detection limit (20 uM probe with 20 nM β-lactamase), demonstrating its potential for in vivo real-time detection in a mice model. Furthermore, we use the click chemistry to conjugate guiding units on the pre-probe, including enterobactin analogues (iron-responsive units), β-maltodextrins (general nutrient units) or cell-penetrating peptides (CPPs, universal penetrating units) to produce the final Ceph-couCF3-GU probes. Finally, the final Ceph-couCF3-GU probes can selectively detect different clinical resistance bacteria by different diffuse ability. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:20:46Z (GMT). No. of bitstreams: 1 ntu-107-R05223207-1.pdf: 8206861 bytes, checksum: c8920bb2d73ada7cec31bac333eec56a (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Table of Contents
List of Figures 6 Abstract (Chinese) 10 Abstract 11 Abbreviations 12 Chapter 1 Introduction 15 1-1 General Introduction 15 1-2 Resistant bacteria- -lactamase 16 1-2.1 History of antibiotics 16 1-2.2 The mechanism of -lactam antibiotic to kill bacteria 19 1-2.3 Classification schemes of-lactamase 22 1-3 The function of bacteria in the host 24 1-3.1 Introduction of microbiota 24 1-3.2 Commensal bacteria regulation between each other and foreign bacterial infection 27 1-3.3 Tooling up for microbiota research………………………………………...30 Chapter 2 Research Objective and Design 33 2-1 Design of the fluorophore CF3-coumarin-alkyne 34 2-2 Design of the pre-probe Ceph-couCF3-alkyne 34 2-3 Design of the guiding unit 35 2-3.1. guiding unit-linkable maltoheptaose……………………………………..36 2-3.2. guiding unit-functionalized Enterobactin………………………………...37 2-3.3. guiding unit-cell penetrating peptide……………………………………..38 2-3.4. Design of characterization………………………………………………..40 Chapter 3 Results and Discussion 42 3-1 Retrosynthesis of the dual functional probe Ceph-couCF3-GU 42 3-2 Synthesis of pre-probe Ceph-couCF3-alkyne 43 3-3 Synthesis of guiding unit-linkable maltoheptaose 45 3-4 Synthesis of guiding unit-functionalized Ent 47 3-5 Synthesis of guiding unit-cell penetrating peptide 53 3-6 Optical properties of the fluorophore couCF3-alkyne……………………...54 3-7 Properties of the pre-probe Ceph-couCF3-alkyne………………………….56 3-7.1 optical properties………………………………………………………..56 3-7.2 The stability test of the pre-probe Ceph-couCF3-alkyne……………….58 3-7.3 Response ability of monitoring -lactamase……………………………60 3-7.4 The permeability of the pre-probe in pathogenic and clinical bacteria………………………………………………………....62 3-7.5 Measurement the pre-probe in IVIS experiment………………………..66 3-8 Formation of the probe Ceph-couCF3-GU by conjugated guiding unit…………………………………………………………………………..68 3-8.1 click with maltoheptaose…………………………………………………68 3-8.2 click with functionalized MGE……………………………………….....70 3-9 Bacterial labeling experiment………………………………………………71 3-10 Conclusion………………………………………………………………….78 Chapter 4 Material and Methods 80 4-1 General Methods 80 4-2 Cloning of Enzyme-overexpressing Plasmids 81 4-3 Expression and Purification of Proteins 81 4-4 Synthesis and Characterization of Compounds 85 4-4.1 synthesis of 2-chloro-4-nitrophenyl-6-azido-6-deoxy--D glucopyranoside………………………………………………………...85 4-4.2 Enzymatic reactions……………………………………………………..88 4-4.3 synthesis of 7-[2-phenylacetyl amino]-3-(7-hydroxy-3-N-2-(2-(prop-2-ynyloxy)ethoxy) acetamide-4-trifluoromethylcoumarin-3-cephem-4-carboxylic acid (Ceph-couCF3-alkyne)………………………………….92 4-4.4 synthesis of linkable maltoheptaose……………………………………..97 4-4.5 Fluorophore coupling reactions………………………………………...101 4-5 Bacterial imaging experiment……………………………………………..102 References 104 | |
dc.language.iso | en | |
dc.title | 雙功能螢光探針用於選擇性追踪和標記宿主內的耐藥細菌 | zh_TW |
dc.title | Dual Functional Fluorogenic Probes for Selectively Tracking and Labeling Resistant Bacteria Inside Hosts | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐丞志(Cheng-Chih Hsu),廖尉斯(Wei-Ssu Liao) | |
dc.subject.keyword | 雙功能螢光探針, | zh_TW |
dc.subject.keyword | Dual Functional Fluorogenic Probes, | en |
dc.relation.page | 133 | |
dc.identifier.doi | 10.6342/NTU201803976 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 8.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。