Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72022Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 范士岡(Shih-Kang Fan) | |
| dc.contributor.author | Yu-Hsuan Yang | en |
| dc.contributor.author | 楊育璿 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:19:32Z | - |
| dc.date.available | 2023-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-20 | |
| dc.identifier.citation | [1] M. Kovač, 'The bioinspiration design paradigm: A perspective for soft robotics,' Soft Robotics, vol. 1, pp. 28-37, 2014.
[2] C. Majidi, 'Soft robotics: a perspective—current trends and prospects for the future,' Soft Robotics, vol. 1, pp. 5-11, 2014. [3] C. Laschi, B. Mazzolai, and M. Cianchetti, 'Soft robotics: Technologies and systems pushing the boundaries of robot abilities,' Science Robotics, vol. 1, p. eaah3690, 2016. [4] L. Ricotti, B. Trimmer, A. W. Feinberg, R. Raman, K. K. Parker, R. Bashir, M. Sitti, S. Martel, P. Dario, andA. Menciassi, 'Biohybrid actuators for robotics: A review of devices actuated by living cells,' Science Robotics, vol. 2, p. eaaq0495, 2017. [5] S. Kim, E. Hawkes, K. Choy, M. Joldaz, J. Foleyz, and R. Wood, 'Micro artificial muscle fiber using NiTi spring for soft robotics,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 2228-2234. [6] J.-E. Shim, Y.-J. Quan, W. Wang, H. Rodrigue, S.-H. Song, and S.-H. Ahn, 'A smart soft actuator using a single shape memory alloy for twisting actuation,' Smart Materials and Structures, vol. 24, p. 125033, 2015. [7] A. Villoslada, A. Flores, D. Copaci, D. Blanco, and L. Moreno, 'High-displacement flexible shape memory alloy actuator for soft wearable robots,' Robotics and Autonomous Systems, vol. 73, pp. 91-101, 2015. [8] D. Copaci, A. Flores, F. Rueda, I. Alguacil, D. Blanco, and L. Moreno, 'Wearable elbow exoskeleton actuated with shape memory alloy,' in Converging Clinical and Engineering Research on Neurorehabilitation II, ed: Springer, 2017, pp. 477-481. [9] D. Dye, 'Shape memory alloys: Towards practical actuators,' Nature materials, vol. 14, p. 760, 2015. [10] Z. Zhakypov, J.-L. Huang, and J. Paik, 'A novel torsional shape memory alloy actuator: Modeling, characterization, and control,' IEEE Robotics & Automation Magazine, vol. 23, pp. 65-74, 2016. [11] Y. Bar-Cohen, 'Electroactive polymers as artificial muscles-reality and challenges,' in 19th AIAA Applied Aerodynamics Conference, 2001, p. 1492. [12] R. Mutlu, G. Alici, and W. Li, 'Three-dimensional kinematic modeling of helix-forming lamina-emergent soft smart actuators based on electroactive polymers,' IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, pp. 2562-2573, 2017. [13] L. Romasanta, M. Lopez-Manchado, and R. Verdejo, 'Increasing the performance of dielectric elastomer actuators: A review from the materials perspective,' Progress in Polymer Science, vol. 51, pp. 188-211, 2015. [14] V. Pillay, T. S. Tsai, Y. E. Choonara, L. C. du Toit, P. Kumar, G. Modi, D. Naidoo, L. K. Tomar, C. Tyagi, and V. M. Ndesendo, 'A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications,' Journal of Biomedical Materials Research Part A, vol. 102, pp. 2039-2054, 2014. [15] A. O’Halloran, F. O’malley, and P. McHugh, 'A review on dielectric elastomer actuators, technology, applications, and challenges,' Journal of Applied Physics, vol. 104, p. 9, 2008. [16] J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, 'A review of shape memory alloy research, applications and opportunities,' Materials & Design (1980-2015), vol. 56, pp. 1078-1113, 2014. [17] A. J. Ijspeert, 'Biorobotics: Using robots to emulate and investigate agile locomotion,' science, vol. 346, pp. 196-203, 2014. [18] V. Chan, H. H. Asada, and R. Bashir, 'Utilization and control of bioactuators across multiple length scales,' Lab on a Chip, vol. 14, pp. 653-670, 2014. [19] A. W. Feinberg, 'Biological soft robotics,' Annual review of biomedical engineering, vol. 17, pp. 243-265, 2015. [20] T. Patino, R. Mestre, and S. Sanchez, 'Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications,' Lab on a Chip, vol. 16, pp. 3626-3630, 2016. [21] Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori, 'An actuated pump on-chip powered by cultured cardiomyocytes,' Lab on a Chip, vol. 6, pp. 362-368, 2006. [22] A. W. Feinberg, A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker, 'Muscular thin films for building actuators and powering devices,' Science, vol. 317, pp. 1366-1370, 2007. [23] J. Kim, J. Park, S. Yang, J. Baek, B. Kim, S. H. Lee, E.-S. Yoon, K. Chun, and S. Park, 'Establishment of a fabrication method for a long-term actuated hybrid cell robot,' Lab on a Chip, vol. 7, pp. 1504-1508, 2007. [24] V. Chan, K. Park, M. B. Collens, H. Kong, T. A. Saif, and R. Bashir, 'Development of miniaturized walking biological machines,' Scientific reports, vol. 2, p. 857, 2012. [25] J. C. Nawroth, H. Lee, A. W. Feinberg, C. M. Ripplinger, M. L. McCain, A. Grosberg, J. O. Dabiri, and K. K. Parker, 'A tissue-engineered jellyfish with biomimetic propulsion,' Nature biotechnology, vol. 30, p. 792, 2012. [26] S.-J. Park, M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. Campbell, S. Dauth, and A. K. Capulli, 'Phototactic guidance of a tissue-engineered soft-robotic ray,' Science, vol. 353, pp. 158-162, 2016. [27] D. M. Bers, 'Cardiac excitation–contraction coupling,' Nature, vol. 415, p. 198, 2002. [28] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, 'Millisecond-timescale, genetically targeted optical control of neural activity,' Nature neuroscience, vol. 8, p. 1263, 2005. [29] S. Ostrovidov, V. Hosseini, S. Ahadian, T. Fujie, S. P. Parthiban, M. Ramalingam, H. Bae, H. Kaji, and A. Khademhosseini, 'Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications,' Tissue Engineering Part B: Reviews, vol. 20, pp. 403-436, 2014. [30] L. Altomare, M. Riehle, N. Gadegaard, M. Tanzi, and S. Farè, 'Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation,' International Journal of Artificial Organs, vol. 33, p. 535, 2010. [31] H. Aubin, J. W. Nichol, C. B. Hutson, H. Bae, A. L. Sieminski, D. M. Cropek, P. Akhyari, and A. Khademhosseini, 'Directed 3D cell alignment and elongation in microengineered hydrogels,' Biomaterials, vol. 31, pp. 6941-6951, 2010. [32] H. Fujita, K. Shimizu, and E. Nagamori, 'Novel method for measuring active tension generation by C2C12 myotube using UV‐crosslinked collagen film,' Biotechnology and bioengineering, vol. 106, pp. 482-489, 2010. [33] P. Bajaj, B. Reddy, L. Millet, C. Wei, P. Zorlutuna, G. Bao, and R. Bashir, 'Patterning the differentiation of C2C12 skeletal myoblasts,' Integrative Biology, vol. 3, pp. 897-909, 2011. [34] K. Nagamine, T. Kawashima, S. Sekine, Y. Ido, M. Kanzaki, and M. Nishizawa, 'Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet,' Lab on a chip, vol. 11, pp. 513-517, 2011. [35] V. Hosseini, S. Ahadian, S. Ostrovidov, G. Camci-Unal, S. Chen, H. Kaji, M. Ramalingam, and A. Khademhosseini, 'Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate,' Tissue Engineering Part A, vol. 18, pp. 2453-2465, 2012. [36] C. G. Anene-Nzelu, K. Y. Peh, A. Fraiszudeen, Y. H. Kuan, S. H. Ng, Y. C. Toh, H. L. Leo, and H. Yu, 'Scalable alignment of three-dimensional cellular constructs in a microfluidic chip,' Lab on a Chip, vol. 13, pp. 4124-4133, 2013. [37] Y. Sun, R. Duffy, A. Lee, and A. W. Feinberg, 'Optimizing the structure and contractility of engineered skeletal muscle thin films,' Acta biomaterialia, vol. 9, pp. 7885-7894, 2013. [38] M. T. Lam, Y.-C. Huang, R. K. Birla, and S. Takayama, 'Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs,' Biomaterials, vol. 30, pp. 1150-1155, 2009. [39] M. S. Sakar, D. Neal, T. Boudou, M. A. Borochin, Y. Li, R. Weiss, R. D. Kamm, C. S. Chen, and H. H. Asada, 'Formation and optogenetic control of engineered 3D skeletal muscle bioactuators,' Lab on a Chip, vol. 12, pp. 4976-4985, 2012. [40] C. Cvetkovic, R. Raman, V. Chan, B. J. Williams, M. Tolish, P. Bajaj, M. S. Sakar, H. H. Asada, M. T. A. Saif, and R. Bashir, 'Three-dimensionally printed biological machines powered by skeletal muscle,' Proceedings of the National Academy of Sciences, vol. 111, pp. 10125-10130, 2014. [41] T. Fujisato, S. Takagi, T. Nakamura, and H. Tsutsui, 'Tissue Engineering Approach to Making Soft Actuators,' in Soft Actuators, ed: Springer, 2014, pp. 463-473. [42] T. Nakamura, S. Takagi, T. Kamon, K.-i. Yamasaki, and T. Fujisato, 'Development and evaluation of a removable tissue-engineered muscle with artificial tendons,' Journal of bioscience and bioengineering, vol. 123, pp. 265-271, 2017. [43] R. Raman, C. Cvetkovic, and R. Bashir, 'A modular approach to the design, fabrication, and characterization of muscle-powered biological machines,' nature protocols, vol. 12, p. 519, 2017. [44] R. Raman, C. Cvetkovic, S. G. Uzel, R. J. Platt, P. Sengupta, R. D. Kamm, and R. Bashir, 'Optogenetic skeletal muscle-powered adaptive biological machines,' Proceedings of the National Academy of Sciences, vol. 113, pp. 3497-3502, 2016. [45] M. Costantini, S. Testa, E. Fornetti, A. Barbetta, M. Trombetta, S. M. Cannata, C. Gargioli, and A. Rainer, 'engineering Muscle networks in 3D gelatin Methacryloyl hydrogels: influence of Mechanical stiffness and geometrical confinement,' Frontiers in bioengineering and biotechnology, vol. 5, p. 22, 2017. [46] Y. Morimoto, H. Onoe, and S. Takeuchi, 'Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues,' Science Robotics, vol. 3, p. eaat4440, 2018. [47] Y. Morimoto, K. Kuribayashi-Shigetomi, and S. Takeuchi, 'Biohybrid muscle fibers integrated in a three-dimensional cellular construct,' in Proc. of the 16th International Conference on Miniaturized Systems for Chemistry and Life Science, 2012, pp. 1645-1647. [48] S. M. Naseer, A. Manbachi, M. Samandari, P. Walch, Y. Gao, Y. S. Zhang, F. Davoudi, W. Wang, K. Abrinia, and J. M. Cooper, 'Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels,' Biofabrication, vol. 9, p. 015020, 2017. [49] S. V. Puttaswamy, S. Sivashankar, R. J. Chen, C. K. Chin, H. Y. Chang, and C. H. Liu, 'Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning,' Biotechnology journal, vol. 5, pp. 1005-1015, 2010. [50] J. Ramón-Azcón, S. Ahadian, R. Obregón, G. Camci-Unal, S. Ostrovidov, V. Hosseini, H. Kaji, K. Ino, H. Shiku, and A. Khademhosseini, 'Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells,' Lab on a Chip, vol. 12, pp. 2959-2969, 2012. [51] M.-Y. Chiang, Y.-W. Hsu, H.-Y. Hsieh, S.-Y. Chen, and S.-K. Fan, 'Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels,' Science advances, vol. 2, p. e1600964, 2016. [52] Y. Wang, Z. Wang, and J. Li, 'Initial design of a biomimetic cuttlefish robot actuated by SMA wires,' in Measuring Technology and Mechatronics Automation (ICMTMA), 2011 Third International Conference on, 2011, pp. 425-428. [53] G. Lippmann, 'Relations entre les phénomènes électriques et capillaires,' Gauthier-Villars, 1875. [54] B. Berge, 'Electrocapillarité et mouillage de films isolants par l'eau.Comptes rendus de l'Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers,' Sciences de la Terre, pp. pp. 317(2), 157-163., 1993. [55] J. Fukai, Y. Shiiba, T. Yamamoto, O. Miyatake, D. Poulikakos, C. Megaridis, and Z. Zhao, 'Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling,' Physics of Fluids, vol. 7, pp. 236-247, 1995. [56] L. W. Schwartz and S. Garoff, 'Contact angle hysteresis and the shape of the three-phase line,' Journal of colloid and interface science, vol. 106, pp. 422-437, 1985. [57] H. Moon, S. K. Cho, R. L. Garrell, and C.-J. C. Kim, 'Low voltage electrowetting-on-dielectric,' Journal of applied physics, vol. 92, pp. 4080-4087, 2002. [58] S. K. Cho, H. Moon, and C.-J. Kim, 'Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,' Journal of microelectromechanical systems, vol. 12, pp. 70-80, 2003. [59] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.-J. Kim, 'Electrowetting and electrowetting-on-dielectric for microscale liquid handling,' Sensors and Actuators A: Physical, vol. 95, pp. 259-268, 2002. [60] W. C. Nelson and C.-J. C. Kim, 'Droplet actuation by electrowetting-on-dielectric (EWOD): A review,' Journal of Adhesion Science and Technology, vol. 26, pp. 1747-1771, 2012. [61] S.-K. Fan, P.-W. Huang, T.-T. Wang, and Y.-H. Peng, 'Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting,' Lab on a Chip, vol. 8, pp. 1325-1331, 2008. [62] H. Pellat, 'Force agissant á la surface de séparation de deux diélectriques.,' CR Seances Acad. Sci.(Paris), pp. pp. 119, 675-678., 1894. [63] T. Jones, 'Liquid dielectrophoresis on the microscale,' Journal of Electrostatics, vol. 51, pp. 290-299, 2001. [64] T. B. Jones, J. D. Fowler, Y. S. Chang, and C.-J. Kim, 'Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation,' Langmuir, vol. 19, pp. 7646-7651, 2003. [65] T. B. Jones, M. P. Perry, and J. R. Melcher, 'Dielectric siphons,' Science, vol. 174, pp. 1232-1233, 1971. [66] P. M. Young and K. Mohseni, 'Calculation of DEP and EWOD forces for application in digital microfluidics,' Journal of Fluids Engineering, vol. 130, p. 081603, 2008. [67] P. L. Penfield Jr, L. Chu, and H. A. Haus, 'Electrodynamics of moving media,' Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT)1963. [68] S.-K. Fan, W.-J. Chen, T.-H. Lin, T.-T. Wang, and Y.-C. Lin, 'Reconfigurable liquid pumping in electric-field-defined virtual microchannels by dielectrophoresis,' Lab on a Chip, vol. 9, pp. 1590-1595, 2009. [69] H. A. Pohl, 'The motion and precipitation of suspensoids in divergent electric fields,' Journal of Applied Physics, vol. 22, pp. 869-871, 1951. [70] H. A. Pohl, Dielectrophoresis : the behavior of neutral matter in nonuniform electric fields. Cambridge; New York: Cambridge University Press, 1978. [71] H. Morgan and N. Green, AC electrokinetics: colloids and nanoparticles, 2003. [72] T. B. Jones and T. B. Jones, Electromechanics of particles: Cambridge University Press, 2005. [73] N. Pamme, 'Continuous flow separations in microfluidic devices,' Lab on a Chip, vol. 7, pp. 1644-1659, 2007. [74] S.-K. Fan, T.-H. Hsieh, and D.-Y. Lin, 'General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting,' Lab on a Chip, vol. 9, pp. 1236-1242, 2009. [75] S.-K. Fan, Y.-W. Hsu, and C.-H. Chen, 'Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis,' Lab on a Chip, vol. 11, pp. 2500-2508, 2011. [76] BCRCClassroom. Bioresource Collection and Research Center (BCRC). Available: http://classroom.bcrc.firdi.org.tw [77] K.-i. Yamasaki, H. Hayashi, K. Nishiyama, H. Kobayashi, S. Uto, H. Kondo, S. Hashimoto, and T. Fujisato, 'Control of myotube contraction using electrical pulse stimulation for bio-actuator,' Journal of Artificial Organs, vol. 12, pp. 131-137, 2009. [78] D. Gawlitta, K. J. M. Boonen, C. W. J. Oomens, F. P. T. Baaijens, and C. V. C. Bouten, 'The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model,' Tissue Engineering Part A, vol. 14, pp. 161-171, 2008. [79] M. A. Lawson and P. P. Purslow, 'Differentiation of myoblasts in serum-free media: effects of modified media are cell line-specific,' Cells Tissues Organs, vol. 167, pp. 130-137, 2000. [80] R. Conejo, A. M. Valverde, M. Benito, and M. Lorenzo, 'Insulin produces myogenesis in C2C12 myoblasts by induction of NF-kappaB and downregulation of AP-1 activities,' Journal of cellular physiology, vol. 186, pp. 82-94, 2001. [81] C. Duan, H. Ren, and S. Gao, 'Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation,' General and comparative endocrinology, vol. 167, pp. 344-351, 2010. [82] H. H. Vandenburgh, P. Karlisch, J. Shansky, and R. Feldstein, 'Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture,' American Journal of Physiology-Cell Physiology, vol. 260, pp. C475-C484, 1991. [83] D. Loessner, C. Meinert, E. Kaemmerer, L. C. Martine, K. Yue, P. A. Levett, T. J. Klein, F. P. W. Melchels, A. Khademhosseini, and D. W. Hutmacher, 'Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms,' Nature protocols, vol. 11, pp. 727, 2016. [84] B. J. Klotz, D. Gawlitta, A. J. W. P. Rosenberg, J. Malda, and F. P. W. Melchels, 'Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair,' Trends in biotechnology, vol. 34, pp. 394-407, 2016. [85] S. H. Au, P. Kumar, and A. R. Wheeler, 'A new angle on pluronic additives: advancing droplets and understanding in digital microfluidics,' Langmuir, vol. 27, pp. 8586-8594, 2011. [86] V. N. Luk, G. C. H. Mo, and A. R. Wheeler, 'Pluronic additives: a solution to sticky problems in digital microfluidics,' Langmuir, vol. 24, pp. 6382-6389, 2008. [87] M. Marotta, R. Bragós, ansd A. M. Gómez-Foix, 'Design and performance of an electrical stimulator for long-term contraction of cultured muscle cells,' BioTechniques, vol. 36, pp. 68-73, 2004. [88] R. G. Dennis and I. KOSNIK, PAUL E, 'Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro,' In Vitro Cellular & Developmental Biology-Animal, vol. 36, pp. 327-335, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72022 | - |
| dc.description.abstract | 本研究利用電控微流體平臺跨尺度同時操控多種水膠與細胞之技術,配合事先設計好之電極圖案,以介電泳力將水膠溶液內C2C12骨骼肌纖維母細胞排列並使水膠交聯固化,以形成具特定三維細胞微結構之水膠微組件,並進行培養,探討不同三維微結構對於骨骼肌纖維母細胞生長與分化之影響。肌纖維母細胞在分化時會彼此融合並形成多核的肌小管,而每個肌小管為一個收縮單位,如何藉由肌纖維母細胞之排列使其在分化時能有等向性的肌小管形成,來達到最有效率之收縮力,為本研究致力之目標。本研究使用之水膠材料為Gelatin methacryloyl (GelMA),加入光起始劑後成為一種光交聯性質之水膠,在照射UV光後會由液態轉為水膠態,此特性使得電控微流體技術得以在其為液態時運用電訊號操控之,並同時操控水膠內之細胞,並在曝光後產生內部具有固定細胞微結構之水膠微組件。在C2C12於GelMA水膠中進行分化後,可做為生物合成致動器之驅動微組件。以電控微流體技術,將含有細胞之驅動微組件以及其他水膠之結構微組件組合出任意的機構,甚至是改變基本微組件的大小來達到更為複雜的結構。我們已經成功建立出一基礎生物合成致動器,其為兩個結構微組件與一個致動微組件組成的1×3結構。經過12天的培養以及分化後,此基礎生物合成致動器可受到外接電訊號產生之一均勻電場刺激而產生收縮運動。我們進一步地將此致動器與Parylene材料進行封裝,期望改善細胞在分化時使致動器蜷曲的問題,在未來也可以進一步地將此致動器連接到不同的結構物上,以及進行可撓式微型電極的封裝,使其產生具時間性與空間性之驅動能力。 | zh_TW |
| dc.description.abstract | We constructed hydrogel microcomponets accommodating patterned skeletal muscle myoblasts (C2C12) by dielectrophoresis (DEP) force on an electromicrofluidic (EMF) platform due to its advanced manipulations of various hydrogels and cells simultaneously in cross-scale by electric signal application. The effects of aligned cell patterns on differentiation and myotubes maturation were analyzed. Myboblasts fuse and form multinucleated myotubes during differentiation, and each individual myotube is consider as a motor unit. To improve the contractility with highly aligned myotubes, the arrangement of myoblasts before differentiation is critical. By using photo-crosslinkable hydrogels, gelatin methacryloyl (GelMA), and pre-designed electrode patterns, hydrogel microcomponents with 3D cell microstructures were constructed after hydrogel polymerization. After C2C12 differentiation within GelMA, the microcomponents were used as driving microcomponents in a biohybrid-actuator. Furthermore, we assembled different driving microcomponents and structural hydrogel microcomponents to construct a biohybrid-actuator on an EMF platform. After 12 days in culture and differentiation, this biohybrid-actuator was actuated by electrical stimulation with a uniform electrical field around the actuator. With the proof-of-concept studies of the biohybrid-actuators, we further encapsulated the actuators with Parylene to improve the stability of the actuator during cell differentiation. In the future, the actuator would be attached on different solid surfaces and further integrated with flexible driving electrodes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:19:32Z (GMT). No. of bitstreams: 1 ntu-107-R05522109-1.pdf: 5794903 bytes, checksum: f8d056d97dffce8eae530fd141664fb8 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii Abstract iii 圖目錄 vii 表目錄 xiii 第1章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-2.1 心肌組織建構之致動器 2 1-2.2 骨骼肌組織之建構 5 1-2.3 致動器之機構設計 10 1-2.4 外在訊號源之設計 12 1-3 研究動機 16 1-4 研究方法 19 第2章 電控微流體技術簡介 23 2-1 介電潤濕理論 23 2-2 液體介電泳理論 26 2-3 粒子介電泳理論 28 2-4 電控微流體平臺之技術與應用 29 第3章 實驗製程、儀器與系統介紹 31 3-1 電控微流體平臺製程 31 3-1.1 清洗玻璃基板 31 3-1.2 蒸鍍光阻貼附層 31 3-1.3 旋轉塗佈正光阻 31 3-1.4 曝光、顯影及定影 32 3-1.5 濕蝕刻 32 3-1.6 塗佈與沉積介電層 32 3-1.7 旋轉塗佈疏水層 33 3-1.8 上板表面處理 34 3-2 實驗系統 34 3-2.1 電控微流體平臺系統 34 3-2.2 細胞培養系統 35 3-2.3 水膠材料 39 3-2.4 曝光系統 42 3-2.5 電控微流體平臺 43 3-2.6 光罩圖案設計 43 3-2.7 細胞染色 45 第4章 實驗結果與討論 47 4-1 水膠與骨骼肌細胞於電控微流體平臺之操控與分析 47 4-1.1 建構不同三維細胞微結構之水膠微組件 47 4-1.2 水膠微組件之培養與免疫螢光染色分析 48 4-2 不同三維微結構對於骨骼肌細胞生長之影響與分析 51 4-2.1 建構特定條狀之三維細胞微結構之水膠微組件 51 4-2.2 不同條狀之三維細胞微結構之免疫螢光染色分析 53 4-3 生物合成致動器之初步設計與建構 55 4-3.1 生物合成致動器結構之材料測試 55 4-3.2 生物合成致動器之初步建構 57 4-3.3 以磁力固定生物合成致動器之建構 60 4-4 電訊號源之架設與致動器之驅動 62 4-4.1 基礎生物合成致動器之電訊號刺激分化與驅動分析 62 4-4.2 電訊號源之優化 66 4-5 生物合成致動器與Parylene結構之封裝 67 4-5.1 致動器之封裝設計討論 67 4-5.2 具2 'μ' m Parylene層之生物合成致動器之建構 68 4-5.3 具5 'μ' m Parylene層之生物合成致動器之建構 70 4-5.4 具Parylene層生物合成致動器之改進與實驗設計 72 第5章 結論與未來展望 74 5-1 結論 74 5-2 未來展望 74 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 三維細胞培養微結構 | zh_TW |
| dc.subject | 電控微流體 | zh_TW |
| dc.subject | C2C12分化 | zh_TW |
| dc.subject | 生物合成致動器 | zh_TW |
| dc.subject | 3D cell microstructure | en |
| dc.subject | C2C12 differentiation | en |
| dc.subject | biohybrid actuator | en |
| dc.subject | Electromicrofluidics (EMF) | en |
| dc.title | 以電控微流體平臺組成具三維骨骼肌細胞微結構之生物合成致動器 | zh_TW |
| dc.title | Construction of Biohybrid Actuators with 3D Skeletal Muscle Cell Microstructures on Electromicrofluidic Platform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 范育睿(Yu-Jui Fan),許聿翔(Yu-Hsiang HSU) | |
| dc.subject.keyword | 電控微流體,三維細胞培養微結構,C2C12分化,生物合成致動器, | zh_TW |
| dc.subject.keyword | Electromicrofluidics (EMF),3D cell microstructure,C2C12 differentiation,biohybrid actuator, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201801212 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 5.66 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
