Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72015
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝宏昀(Hung-Yun Hsieh)
dc.contributor.authorQuang-Tuan Thieuen
dc.contributor.author韶光俊zh_TW
dc.date.accessioned2021-06-17T06:19:13Z-
dc.date.available2018-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-20
dc.identifier.citation[1] Bell Labs Consulting, “Who will satisfy the desire to consume?” Tech. Rep.,2016.
[2] Ericsson, “Cellular Networks for Massive IoT: Enabling Low Power Wide Area Applications,” White Paper, Stockholm, Sweden, Tech. Rep., Jan. 2016.
[3] Doppler, K. and Rinne, M. and Wijting, C. and Ribeiro, C.B. and Hugl, K.,“Device-to-Device Communication as An Underlay to LTE-Advanced Networks,” IEEE Communications Magazine, vol. 47, no. 12, pp. 42–49, Dec 2009.
[4] Liu, J. and Kawamoto, Y. and Nishiyama, H. and Kato, N. and Kadowaki,N., “Device-to-Device Communications Achieve Efficient Load Balancing in LTE-Advanced Networks,” IEEE Wireless Communications, vol. 21, no. 2, pp. 57–65, April 2014.
[5] Lin, X. and Andrews, J.G. and Ghosh, A. and Ratasuk, R., “An Overview of 3GPP Device-to-Device Proximity Services,” IEEE Communications Magazine, vol. 52, no. 4, pp. 40–48, April 2014.
[6] Sun, Yue and Wang, Tianyu and Song, Lingyang and Han, Zhu, “Efficient Resource Allocation for Mobile Social Networks in D2D Communication Underlaying Cellular Networks,” in Proc. IEEE Int’l Conf. Comm. (ICC), June 2014, pp. 2466–2471.
[7] W. Paper, “Rethink Mobile Communications for 2020+,” FuTURE Mobile Communication Forum 5G SIG, Tech. Rep., Nov. 2014.
[8] L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81,
September 2015.
[9] Fodor, G. and Dahlman, E. and Mildh, G. and Parkvall, S. and Reider, N. and Miklos, G. and Turanyi, Z., “Design Aspects of Network Assisted Device-to-Device Communications,” IEEE Communications Magazine, vol. 50, no. 3, pp. 170–177, March 2012.
[10] Wei, L. and Hu, R.Q. and Qian, Y. and Wu, G., “Enable Device-to-Device Communications Underlaying Cellular Networks: Challenges and Research Aspects,” IEEE Communications Magazine, vol. 52, no. 6, pp. 90–96, June 2014.
[11] R. Zhang, X. Cheng, L. Yang, and B. Jiao, “Interference-Aware Graph Based Resource Sharing for Device-to-Device Communications Underlaying Cellular Networks,” in Proc. IEEE WCNC, April 2013, pp. 140–145.
[12] Hasan, Monowar and Hossain, Ekram and Kim, Dong In, “Resource Allocation Under Channel Uncertainties for Relay-Aided Device-to-Device Communication Underlaying LTE-A Cellular Networks,” IEEE Trans. Wireless Communications, vol. 13, no. 4, pp. 2322–2338, April 2014.
[13] Y. Pei and Y.-C. Liang, “Resource Allocation for Device-to-Device Communications Overlaying Two-Way Cellular Networks,” IEEE Trans. Wireless Communications, vol. 12, no. 7, pp. 3611–3621, July 2013.
[14] Daohua Zhu and Jiaheng Wang and Swindlehurst, A.L. and Chunming Zhao, “Downlink Resource Reuse for Device-to-Device Communications Underlaying Cellular Networks,” IEEE Signal Processing Letters, vol. 21, no. 5, pp. 531–534, May 2014.
[15] N. Lee and X. Lin and J. G. Andrews and R. W. Heath, “Power Control for D2D Underlaid Cellular Networks: Modeling, Algorithms, and Analysis,”IEEE Journal on Selected Areas in Communications, vol. 33, no. 1, pp. 1–13, Jan 2015.
[16] Si Wen and Xiaoyue Zhu and Zhesheng Lin and Xin Zhang and Dacheng Yang,“Energy Efficient Power Allocation Schemes for Device-to-Device(D2D) Communication,” in Proc. IEEE 78th Vehicular Technology Conference (VTC Fall), Sept 2013, pp. 1–5.
[17] Y. Huang and A. A. Nasir and S. Durrani and X. Zhou, “Mode Selection, Resource Allocation, and Power Control for D2D-Enabled Two-Tier Cellular Network,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3534–3547, Aug 2016.
[18] H. Min, J. Lee, S. Park, and D. Hong, “Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks,” IEEE Trans. Wireless Communications, vol. 10, no. 12, pp. 3995–
4000, December 2011.
[19] C.-H. Yu, K. Doppler, C. Ribeiro, and O. Tirkkonen, “Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks,” IEEE Trans. Wireless Communications, vol. 10, no. 8, pp. 2752–2763,
August 2011.
[20] G. Yu and L. Xu and D. Feng and R. Yin and G. Y. Li and Y. Jiang, “Joint Mode Selection and Resource Allocation for Device-to-Device Communications,” IEEE Transactions on Communications, vol. 62, no. 11, pp. 3814–3824, Nov 2014.
[21] J. Habibi and A. Ghrayeb and A. G. Aghdam, “Optimal Cooperative Wireless Transmission With Limited Channel State Information,” IEEE Transactions on Communications, vol. 63, no. 12, pp. 4768–4783, Dec 2015.
[22] H. Kim, H. Wang, S. Lim, and D. Hong, “On the impact of outdated channel information on the capacity of secondary user in spectrum sharing environments,” IEEE Transactions on Wireless Communications, vol. 11, no. 1, pp.284–295, January 2012.
[23] 3GPP, “Study on Downlink Multiuser Superposition Transmission (MUST) for LTE,” TR 36.859 V1.0, Release 13, Tech. Rep., 2015.
[24] NTT Docomo, “Evaluation Methodologies for Downlink Multiuser Superposition Transmissions,” 3GPP TSG RAN WG1 Meeting #81, R1-153332, Fukuoka, Japan, Tech. Rep., May 2015.
[25] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator controlled device-to-device communications in lte-advanced networks,” IEEE Wireless Communications, vol. 19, no. 3, pp. 96–104, June 2012.
[26] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Communications Surveys Tutorials,vol. 16, no. 4, pp. 1801–1819, Fourthquarter 2014.
[27] Henrion, R., “Introduction to Chance-Constrained Programming,” 2004.
[28] P. A. Vikhar, “Evolutionary algorithms: A critical review and its future prospects,” in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Dec 2016, pp. 261–265.
[29] Wang, Dongyu and Wang, Xiaoxiang, “An Interference Management Scheme for Device-to-Device Multicast in Spectrum Sharing Hybrid Network,” in Proc. IEEE PIMRC, Sept 2013, pp. 3213–3217.
[30] I. Saarinen, A. Mammela, P. Jarvensivu, and K. Ruotsalainen, “Power Control in Feedback Communications over a Fading Channel,” IEEE Trans. Vehicular Technology, vol. 50, no. 5, pp. 1231–1239, Sep. 2001.
[31] W. Xu, X. Wang, and S. Alshomrani, “SINR-Constrained Power Minimization in MISO Interference Channel with Imperfect CSI: A Bernstein Approximation Approach,” in Proc. IEEE GLOBECOM, Dec 2013, pp. 4216–4220.
[32] S. Kandukuri and S. Boyd, “Optimal Power Control in Interference-Limited Fading Wireless Channels with Outage-Probability Specifications,” IEEE Trans. Wireless Communication, vol. 1, no. 1, pp. 46–55, Jan. 2002.
[33] Daquan Feng and Lu Lu and Yi Yuan-Wu and Li, G.Y. and Gang Feng and Shaoqian Li, “Device-to-Device Communications Underlaying Cellular Networks,” IEEE Trans. Communications, vol. 61, no. 8, pp. 3541–3551, August 2013.
[34] N. Vucic and H. Boche, “Robust QoS-Constrained Optimization of Downlink Multiuser MISO Systems,” IEEE Trans. on Signal Processing, vol. 57, no. 2, pp. 714–725, Feb 2009.
[35] A. Tajer, N. Prasad, and X. Wang, “Robust Linear Precoder Design for Multi-Cell Downlink Transmission,” IEEE Trans. on Signal Processing, vol. 59, no. 1, pp. 235–251, Jan 2011.
[36] Fodor, G. and Della Penda, D. and Belleschi, M. and Johansson, M. and Abrardo, A., “A Comparative Study of Power Control Approaches for Device-to-Device Communications,” in Proc. IEEE Int’l Conf. Comm. (ICC), June 2013, pp. 6008–6013.
[37] K.-K. Wong, “Optimal Stochastic Power Control with Outage Capacity Constraints,” Proc. IEEE GLOBECOM, pp. 1–5, Dec. 2006.
[38] W.-L. Li, Y. J. Zhang, A.-C. So, and M. Win, “Slow Adaptive OFDMA Systems Through Chance Constrained Programming,” IEEE Trans. Signal Processing, vol. 58, no. 7, pp. 3858–3869, Jul. 2010.
[39] N. Vucic and H. Boche, “A Tractable Method for Chance-Constrained Power Control in Downlink Multiuser MISO Systems With Channel Uncertainty,”IEEE Signal Processing Letters, vol. 16, no. 5, pp. 346–349, 2009.
[40] K.-L. Hsiung and R. Chen, “Power Allocation with Outage Probability Constraints in Lognormal Fading Wireless Channels: A Relaxation Approach,”in Proc. 39th Southeastern Symp. on System Theory (SSST ’07), March 2007, pp. 173–175.
[41] S. Parsaeefard, A. Sharafat, and M. Rasti, “Robust Probabilistic Distributed Power Allocation by Chance Constraint Approach,” Proc. IEEE PIMRC, pp. 2162 –2167, Sept. 2010.
[42] Y. Shi and J. Zhang and K. B. Letaief, “Optimal Stochastic Coordinated Beamforming for Wireless Cooperative Networks With CSI Uncertainty,”IEEE Transactions on Signal Processing, vol. 63, no. 4, pp. 960–973, Feb 2015.
[43] L. J. Hong, Y. Yang, and L. Zhang, “Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach,” Oper. Res.,vol. 59, no. 3, pp. 617–630, May 2011.
[44] D. Feng, L. Lu, Y. Yuan-Wu, G. Li, G. Feng, and S. Li, “Optimal resource Allocation for Device-to-Device Communications in Fading Channels,” in Proc. IEEE GLOBECOM, Dec 2013, pp. 3673–3678.
[45] S. Shalmashi, G. Miao, and S. Ben Slimane, “Interference Management for Multiple Device-to-Device Communications Underlaying Cellular Networks,”in Proc. IEEE PIMRC, Sept 2013, pp. 223–227.
[46] Lee, Dong Heon and Choi, Kae Won and Jeon, Wha Sook and Jeong, Dong Geun, “Two-Stage Semi-Distributed Resource Management for Device-to-Device Communication in Cellular Networks,” IEEE Trans. Wireless Communications, vol. 13, no. 4, pp. 1908–1920, April 2014.
[47] Y. Chai, Q. Du, and P. Ren, “Partial Time-Frequency Resource Allocation for Device-to-Device Communications Underlaying Cellular Networks,” in Proc. IEEE Int’l Conf. Comm. (ICC), June 2013, pp. 6055–6059.
[48] S. Lv, C. Xing, Z. Zhang, and K. Long, “Guard zone based interference management for d2d-aided underlaying cellular networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 5466–5471, June 2017.
[49] D. Lee and S. Park, “Performance analysis of multiple-input multiple-output interference alignment with user selection,” IET Communications, vol. 9, no. 7, pp. 1026–1033, 2015.
[50] Z. Du, X. Song, J. Cheng, and N. C. Beaulieu, “Maximum likelihood based channel estimation for macrocellular ofdm uplinks in dispersive time-varying channels,” IEEE Transactions on Wireless Communications, vol. 10, no. 1,
pp. 176–187, January 2011.
[51] M. Biswal, N. Biswal, and D. Li, “Probabilistic Linear Programming Problems with Exponential Random Variables: A Technical Note,” European Journal of Operational Research, vol. 111, no. 3, pp. 589–597, 1998.
[52] S. Mehrotra, “On the Implementation of a Primal-Dual Interior Point Method,” SIAM Journal on Optimization, vol. 2, no. 4, pp. 575–601, 1992. Online Available at: http://dx.doi.org/10.1137/0802028
[53] Y. Ye, M. J. Todd, and S. Mizuno, “An o(nl)-iteration homogeneous and self-dual linear programming algorithm,” Mathematics of Operations Research, vol. 19, no. 1, pp. 53–67, 1994. Online Available at:http://dx.doi.org/10.1287/moor.19.1.53
[54] C. M. S. Mokhtar S. Bazaraa, Hanif D. Sherali, Nonlinear Programming: Theory and Algorithms. Wiley, 2006.
[55] Quang-Tuan Thieu and Hung-Yun Hsieh, “Outage Protection for Cellular-Mode Users in Device-to-Device Communications through Stochastic Optimization,” in Proceedings of IEEE Vehicular Technology Conference (VTC Spring), May 2015, pp. 1–5.
[56] R. Storn and K. Price, “Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, Dec. 1997.
[57] K. Zielinski, D. Peters, and R. Laur, “Run Time Analysis Regarding Stopping Criteria for Differential Evolution and Particle Swarm Optimization,” Proc. 1st Int’l Conf. Experiments/Process/Syst. Modelling/ Simulation/Optimization, Athens, Greece, 2005.
[58] S. Dasgupta, S. Das, A. Biswas, and A. Abraham, “On Stability and Convergence of the Population-Dynamics in Differential Evolution,” AI Commun., vol. 22, no. 1, pp. 1–20, Jan. 2009.
[59] S. Ghosh, S. Das, A. Vasilakos, and K. Suresh, “On Convergence of Differential Evolution Over a Class of Continuous Functions With Unique Global Optimum,” IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cyber-
netics, vol. 42, no. 1, pp. 107–124, 2012.
[60] G. V. R. A. Ravindran, K. M. Ragsdell, Engineering Optimization: Method and Applications. Wiley, May, 2006.
[61] M. E. Bock, P. Diaconis, F. W. Huffer, and M. D. Perlman, “Inequalities for Linear Combinations of Gamma Random Variables,” The Canadian Journal of Statistics / La Revue Canadienne de Statistique, vol. 15, no. 4, pp. pp.
387–395, 1987. Online Available at: http://www.jstor.org/stable/3315257
[62] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd Ed. Cambridge University Press, 2007.
[63] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, “An Interior Point Algorithm for Large-Scale Nonlinear Programming,,” SIAM Journal on Optimization, vol. 9, No.4, pp. 877–900, 1999.
[64] Y. Saito and Y. Kishiyama and A. Benjebbour and T. Nakamura and A. Li and K. Higuchi, “Non-orthogonal multiple access (noma) for cellular future radio access,” in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), June 2013, pp. 1–5.
[65] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (noma),”in 2013 IEEE 24th Annual International Symposium on Personal, Indoor,
and Mobile Radio Communications (PIMRC), Sept 2013, pp. 611–615.
[66] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5g systems with randomly deployed users,”IEEE Signal Processing Letters, vol. 21, no. 12, pp. 1501–1505, Dec 2014.
[67] H. Nikopour and H. Baligh, “Sparse code multiple access,” in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Sept 2013, pp. 332–336.
[68] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “Scma codebook design,” in 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Sept 2014, pp. 1–5.
[69] X. Dai, S. Chen, S. Sun, S. Kang, Y. Wang, Z. Shen, and J. Xu, “Successive interference cancelation amenable multiple access (sama) for future wireless communications,” in 2014 IEEE International Conference on Communication Systems, Nov 2014, pp. 222–226.
[70] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern division multiple access - a novel nonorthogonal multiple access for fifth-generation radio networks,” IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3185–3196, April 2017.
[71] D. Fang, Y. C. Huang, Z. Ding, G. Geraci, S. L. Shieh, and H. Claussen, “Lattice partition multiple access: A new method of downlink non-orthogonal multiuser transmissions,” in 2016 IEEE Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.
[72] M. AL-Imari, M. A. Imran, R. Tafazolli, and D. Chen, “Performance evaluation of low density spreading multiple access,” in 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC), Aug 2012, pp. 383–388.
[73] N. Otao, Y. Kishiyama, and K. Higuchi, “Performance of Non-Orthogonal Access with SIC in Cellular Downlink using Proportional Fair-based Resource Allocation,” in 2012 International Symposium on Wireless Communication Systems (ISWCS), Aug 2012, pp. 476–480.
[74] T. Seyama and T. Dateki and H. Seki, “Efficient Selection of User Sets for Downlink Non-Orthogonal Multiple Access,” in Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE 26th Annual International Symposium on, Aug 2015, pp. 1062–1066.
[75] E. Okamoto, “An Improved Proportional Fair Scheduling in Downlink Non-Orthogonal Multiple Access System,” in Vehicular Technology Conference (VTC Fall), 2015 IEEE 82nd, Sept 2015, pp. 1–5.
[76] Vienna LTE-A Downlink System-Level Simulator. Online Available at: https://www.nt.tuwien.ac.at/research/mobile-communications/vienna-lte-a-simulators//
[77] 3GPP, “LTE, Evolved Universal Terrestrial Radio Access (E-UTRA): Physical channels and modulation,” TS 136.211 V12.6.0, Tech. Rep., July 2015.
[78] ——, “Requirements for evolved UTRA (E-UTRA) and evolved UTRAN (E-UTRAN),” Tech. Rep.
[79] H. Holma, A. Toskala, K. Ranta-aho, and J. Pirskanen, “High-Speed Packet Access Evolution in 3GPP Release 7 [Topics in Radio Communications],”IEEE Communications Magazine, vol. 45, no. 12, pp. 29–35, December 2007.
[80] Ericsson, “Ericsson mobility reports,” White Paper, Tech. Rep., Nov. 2012.
[81] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Transactions on Communications, vol. 40, no. 5, pp. 873–884, May 1992.
[82] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,”IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 927–946, May 1998.
[83] Josep Colom Ikuno, “System Level Modeling and Optimization of the LTE Downlink,” Ph.D. dissertation, Institut of Telecommunications, Technische Universitat Wien, 2012.
[84] Q.-T. Thieu and C.-H. Wang and H.-Y. Hsieh, “A Wideband Scheduling Method for Non-Orthogonal Multiple Access in the Vienna LTE-A Downlink System-Level Simulator,” in 2016 IEEE Globecom Workshops (GC Wkshps),Dec 2016, pp. 1–6.
[85] M. Shafi and A. F. Molisch and P. J. Smith and T. Haustein and P. Zhu and P. De Silva and F. Tufvesson and A. Benjebbour and G. Wunder, “5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1201–1221, June 2017.
[86] A. Benjebbovu and A. Li and Y. Saito and Y. Kishiyama and A. Harada and T. Nakamura, “System-Level Performance of Downlink NOMA for Future LTE Enhancements,” in 2013 IEEE Globecom Workshops (GC Wkshps), Dec 2013, pp. 66–70.
[87] M. R. Hojeij and J. Farah and C. A. Nour and C. Douillard, “Resource Allocation in Downlink Non-Orthogonal Multiple Access (NOMA) for Future Radio Access,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), May 2015, pp. 1–6.
[88] Z. Q. Al-Abbasi and D. K. C. So, “User-Pairing Based Non-Orthogonal Multiple Access (NOMA) System,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), May 2016, pp. 1–5.
[89] MediaTek Inc, “3GPP TSG RAN WG1 Meeting #82: Link-abstraction Method for ML Receiver in MUST, R1-154458,” Fukuoka, Japan, Tech. Rep., May 2015.
[90] Z. Sun, C. Yin, and G. Yue, “Reduced-Complexity Proportional Fair Scheduling for OFDMA Systems,” in 2006 International Conference on Communications, Circuits and Systems, vol. 2, June 2006, pp. 1221–1225.
[91] Rohde & Schwarz, “1MA221 LTE: System Specifications and Their Impact on RF & Base Band Circuits,” Tech. Rep., 2013.
[92] 3GPP, “Physical layer procedures,” TS 36.213 version 13.0.0 Release 13, Tech. Rep., 2016.
[93] M.-J. Yang and H.-Y. Hsieh, “Moving Towards Non-orthogonal Multiple Access in Next-Generation Wireless Access Networks,” in 2015 IEEE International Conference on Communications (ICC), June 2015, pp. 5633–5638.
[94] C. Iyigun and A. Ben-Israel, “Probabilistic distance clustering: Algorithm and applications,” in Clustering Challenges In Biological Networks. World Scientific, 2009, pp. 29–52.
[95] F. You, P. M. Castro, and I. E. Grossmann, “Dinkelbach’s algorithm as an efficient method to solve a class of MINLP models for large-scale cyclic scheduling problems,” Computers & Chemical Engineering, vol. 33, no. 11, pp. 1879 – 1889, 2009. Online Available at:
http://www.sciencedirect.com/science/article/pii/S0098135409001367
[96] W. Dinkelbach, “On Nonlinear Fractional Programming,” Management Science, vol. 13, no. 7, pp. 492–498, 1967. Online Available at: http://www.jstor.org/stable/2627691
[97] F. Fang, H. Zhang, J. Cheng, S. Roy, and V. C. M. Leung, “Joint User Scheduling and Power Allocation Optimization for Energy-Efficient NOMA Systems With Imperfect CSI,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 12, pp. 2874–2885, Dec 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72015-
dc.description.abstract現今第三代及第四代LTE系統正面臨使用者日增的需求 , 為了解決此問題 , 於下世代通訊網路中支援裝置之間的通訊設計被廣泛討論 , 另外 , 使用非正交多工接取技術以利用能量域的多訊號複用 , 更可以有效提升頻譜效率 。 在本篇論文的第一部分 , 我們在Rayleigh衰落通道下 , 透過隨機最佳化 , 針對如何分配同個資源給裝置間通訊使用者以及行動通訊使用者問題進行深入探討 , 尤其在行動通訊使用者必須有較優先的保護下 , 無線通道的隨機特性會導致裝置間通訊使用者以及行動通訊使用者共存干擾問題 。 不同於現今文獻只考慮長期的通道增益衰落 ,我們著重在通道隨機特性上 , 決定裝置間通訊使用者的傳輸功率 , 以最佳化總資料傳輸率並透過一臨界值保護行動通訊使用者通訊品質 。 首先 , 我們介紹一個將目標函式 , 限制函式以及隨機變數轉換成等效確定性函式的新技術 , 因為此為非線性及非凸函式問題 , 我們更嚴格的定義傳輸功率之上限限制 , 以減少複雜度以及搜尋最佳解的不確定性 , 接著 , 我們提出兩種演算法 , 一為將此非線性問題做線性規劃 , 二為根據差分計算的次經驗法則直接解此非線性問題 。 模擬結果顯示 , 在同樣的限制下 , 我們所提出的演算法可以保護行動通訊使用者品質 , 雖然在通道的不確定性下 , 但裝置間通訊使用者可以在總資料傳輸率有更傑出表現 。
在論文的第二部分 , 雖然很多文獻利用頻譜效率證明非正交多重接取技術勝過於正交多工接取 , 但如何有效設計非正交多重接取排程演算法 , 是我們著重的重點 。 考量實際子頻段應用以及其限制 , 即在不同子頻段下 , 同個使用者需使用相同的傳輸模式 , 我們將排程建構成功率最佳化問題 。 為了解決此限制 , 首先 , 我們提出隨機分群方法將使用者分群 , 在SINR限制下 , 利用回傳的子頻段CQI以及功率分配因子來計算每個群的大小以及使用者距離 , 接著 , 將排程分成使用者分配以及功率分配兩個子問題 , 並利用有母數分析方法 、 整數線性及非線性規劃來解決此問題 。 模擬結果顯示 , 我們所提出的隨機分群方法 , 比起使用k-means分群演算法 , 有45%的效能增益 。
zh_TW
dc.description.abstractThe current 3G/4G-LTE system is facing a problem in satisfying the relentless increasing demand from cellular users. To mitigate the problem, the 5G network is designed to support the Device-to-Device (D2D) communication. Moreover, the spectrum is expected to be used more effectively when signals from multiple users are multiplexed in the power domain using Non-Orthogonal Multiple Access (NOMA). In Part I of this dissertation, we aim to investigate the problem of D2D-mode users sharing the same radio resource blocks with the cellular-mode user under Rayleigh channel fading through stochastic optimization. The stochastic nature of the wireless channel causes the coexistence problem between cellular-mode and D2D-mode users a nontrivial task, especially when protection
of cellular-mode users is strictly required. While related work has investigated the interference management problem in different scenarios, most approaches have considered only the long-term channel gain without explicitly addressing the randomness of the channel. Our objective is to determine the transmission power of all D2D-mode users for optimizing their sum data rates while ensuring the outage probability of signal sent by the cellular-mode user to stay below the desired protection threshold. We first introduce a new technique to transform both the objective and constraint functions involving random variables into equivalent yet deterministic forms. Since the formulated problem is non-linear and non-convex, we further tighten the upper bound of the transmission power constraint to reduce the complexity and uncertainty of searching for the optimal solution. To solve the formulated problem, we propose two different algorithms: the first algorithm reformulates and solves the problem as a linear programming (LP) problem while the second algorithm directly solves the non-linear problem based on the meta-heuristic of differential evolution (DE). Simulation results demonstrate that by using the proposed algorithms, the outage probability of the cellular-mode user
can be maintained below the desired threshold despite the uncertainty of channel conditions, while the sum rate of D2D-mode users outperforms baseline methods under the same constraint. In Part II, our concentration is the scheduling method used for NOMA. While many endeavors have focussed on showing that NOMA has a practical advantage in terms of spectrum efficiency over OFDMA, there still needs more research on the design of efficient NOMA scheduling algorithms. We formulate the scheduling for NOMA as an optimization problem of energy efficiency in which we take a practical requirement for subband scenario into consideration. In particular, a NOMA receiver is required to use the same transmission schemes on different allocated subbands. The constraint, in fact, raises a challenge for designing an optimal scheduling algorithm for the subband scenario. To address such a special constraint, our approach is to classify users into different groups first. In the case of two NOMA users, there will be at most two clusters and we propose to use the probabilistic clustering method to determine the membership probability of each user. Particularly, we take into account not only the feedback subband CQIs but also the required power split factor to meet the SINR constraint as two main factors in calculating the size of each cluster and distance to them. The novel design thus allows us to classify users into a correct cluster that fits the special NOMA constraint. After having user clustered, we divide the scheduling problem into two sub-problems: user assignment and power allocation. Since both of the sub-problems appear in the fractional form, we introduce a parametric approach to transform them into non-fractional form and apply popular algorithms such as integer linear programming and non-linear programming algorithm like interior point method to solve the problem. Evaluation results show that our proposed algorithm based on the probabilistic clustering method has much better performance gain than the baseline method which uses the k-means clustering algorithm, with up to 45 percent gain.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:19:13Z (GMT). No. of bitstreams: 1
ntu-107-D96942029-1.pdf: 2766848 bytes, checksum: fac9b925649fe4dca6ecaa1d26ea1c41 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
PART I PROTECTION FOR CU IN D2D COMMUNICATIONS
CHAPTER 2 BACKGROUND AND MOTIVATION . . . . . . . 6
2.1 D2D Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 History of D2D Communications . . . . . . . . . . . . . . . 7
2.1.2 Interference Management in D2D Communications . . . . . 8
2.2 Chance Constrained Programming . . . . . . . . . . . . . . . . . . 8
2.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Challenges and Solution Approach . . . . . . . . . . . . . . 9
2.3 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Types of EA Algorithms . . . . . . . . . . . . . . . . . . . 11
2.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
CHAPTER 3 PROTECTION FOR CELLULAR-MODE USERS
IN COEXISTENCE WITH D2D-MODE USERS . . . . . . . . . 15
3.1 System Model and Problem Formulation . . . . . . . . . . . . . . 15
3.2 Transformation of Chance Constrained Optimization Problem . . . 18
3.2.1 Approximation of Probabilistic Constraint using DC Pro-
gramming Technique . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Equivalent and Deterministic Transformation of Chance-
Constrained Optimization . . . . . . . . . . . . . . . . . . . 20
3.2.3 Random CU-BS Channel Gain . . . . . . . . . . . . . . . . 23
3.3 Solving the Protection Problem with Chance Constraint . . . . . . 25
3.3.1 Linearization-based Algorithm . . . . . . . . . . . . . . . . 25
3.3.2 Differential Evolution-based Algorithm . . . . . . . . . . . 30
3.3.3 Tightening the Constraint . . . . . . . . . . . . . . . . . . 35
3.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Parameters Settings . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Evaluation of Algorithm Designs . . . . . . . . . . . . . . . 44
3.4.3 Comparison with Conventional Models . . . . . . . . . . . 51
3.4.4 Performance Gain with Full Randomness . . . . . . . . . . 57
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
PART II SUBBAND SCHEDULING IN NOMA
CHAPTER 4 BACKGROUND AND MOTIVATION . . . . . . . 61
4.1 Fundamentals of LTE . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.1 MIMO Transmission . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2 Layer-to-Codeword Mapping . . . . . . . . . . . . . . . . . 65
4.1.3 Channel Feedback from UE to eNodeB . . . . . . . . . . . 66
4.2 Fundamentals of NOMA . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 The Vienna LTE-A Downlink System-level Simulator . . . . . . . 69
4.3.1 Modeling Physical Layer . . . . . . . . . . . . . . . . . . . 70
4.3.2 Modeling System-Level Simulation . . . . . . . . . . . . . . 72
4.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
CHAPTER 5 PLATFORM FOR NON ORTHOGONAL MULTI-
PLE ACCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1 Extending Vienna LTE-A Downlink System-level Simulator . . . . 76
5.2 Modeling Practical Receiver in System-level Simulator . . . . . . . 78
5.2.1 Receiver Design at Link-level . . . . . . . . . . . . . . . . . 79
5.2.2 Mapping Practical SINR from Link-level . . . . . . . . . . 80
5.3 Wideband Scheduling Method for NOMA . . . . . . . . . . . . . . 81
5.3.1 Construction of MCS table . . . . . . . . . . . . . . . . . . 81
5.3.2 Proportional Fairness Scheduling Algorithm . . . . . . . . . 81
5.3.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Lower Bound of Power Split Factor . . . . . . . . . . . . . . . . . 86
5.4.1 Case 1: K = 2 Users . . . . . . . . . . . . . . . . . . . . . 86
5.4.2 Case 2: K > 2 Users . . . . . . . . . . . . . . . . . . . . . 90
5.4.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
CHAPTER 6 SUBBAND SCHEDULING FOR NOMA . . . . . . 97
6.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Solution for Subband Scheduling . . . . . . . . . . . . . . . . . . . 100
6.2.1 Probabilistic Clustering Approach . . . . . . . . . . . . . . 100
6.2.2 Sub-Problem User Assignment . . . . . . . . . . . . . . . . 105
6.2.3 Sub-Problem Power Allocation . . . . . . . . . . . . . . . . 107
6.2.4 Optimality and Convergence Analysis . . . . . . . . . . . . 108
6.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1 Proposed Probabilistic Clustering vs. k-means Algorithm . 109
6.3.2 Proposed Probabilistic Clustering Algorithm vs. Different
Confidence levels . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . .113
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
dc.language.isoen
dc.title不完美通道狀態資訊下基於隨機最佳化之通訊品質保護與使用者配對問題研究zh_TW
dc.titleUse of Stochastic Optimization for D2D Outage Protection
and NOMA User Pairing under Imperfect Channel State
Information
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee蘇炫榮(Hsuan-Jung Su),周承復(Cheng-Fu Chou),高榮鴻(Rung-Hung Gau),謝欣霖(Shih-Lin Shieh)
dc.subject.keyword隨機最佳化,共存問題,排程,zh_TW
dc.subject.keyword5G,chance constrained,D2D,cellular,coexistence,power control,NOMA,scheduling,wideband,subband,en
dc.relation.page123
dc.identifier.doi10.6342/NTU201803946
dc.rights.note有償授權
dc.date.accepted2018-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved