請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72008完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | |
| dc.contributor.author | Yi-Ling Kao | en |
| dc.contributor.author | 高漪翎 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:18:54Z | - |
| dc.date.available | 2018-08-21 | |
| dc.date.copyright | 2018-08-21 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-20 | |
| dc.identifier.citation | Reference
1. SZULC, Pawel; BOUXSEIN, Mary L. Overview of osteoporosis: epidemiology and clinical management. Vertebral fracture initiative resource document, 2011. 2. BARTL, Reiner; FRISCH, Bertha. Osteoporosis: diagnosis, prevention, therapy. Springer Science & Business Media, 2009. 3. US DEPARTMENT OF HEALTH AND HUMAN SERVICES, et al. Bone health and osteoporosis: a report of the Surgeon General. Rockville, MD: US Department of Health and Human Services, Office of the Surgeon General, 2004, 87. 4. ORWOLL, Eric S.; BILEZIKIAN, John P.; VANDERSCHUEREN, Dirk (ed.). Osteoporosis in men: the effects of gender on skeletal health. Academic Press, 2009. 5. MAZESS, Richard B. On aging bone loss. Clinical orthopaedics and related research, 1982, 165: 239-252. 6. SYLVESTER, Francisco A. Effects of Digestive Diseases on Bone Metabolism. Pediatric Gastrointestinal and Liver Disease, 2011, 4: 1012-1019. 7. NORDIN, B. E. C. International patterns of osteoporosis. Clinical Orthopaedics and Related Research, 1966, 45: 17-30. 8. CUMMINGS, Steven R., et al. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiologic reviews, 1985, 7.1: 178-208. 9. KANIS, John A., et al. The diagnosis of osteoporosis. Journal of bone and mineral research, 1994, 9.8: 1137-1141. 10. KANIS, John A., et al. Guidelines for diagnosis and management of osteoporosis. Osteoporosis International, 1997, 7.4: 390-406. 11. LORENC, Roman, et al. Guidelines for the diagnosis and management of osteoporosis in Poland: Update 2017. Endokrynologia Polska, 2017, 68.5: 604-609. 12. SINHA, R.; BUKHARI, M. OP0292 the diagnosis of osteoporosis using BMD and T score measurements at specific skeletal sites. Annals of the Rheumatic Diseases, 2014, 73: 172. 13. VÄÄNÄNEN, H. Kalervo; HÄRKÖNEN, Pirkko L. Estrogen and bone metabolism. Maturitas, 1996, 23: S65-S69. 14. CAWTHON, Peggy M. Gender differences in osteoporosis and fractures. Clinical Orthopaedics and Related Research®, 2011, 469.7: 1900-1905. 15. ADLER, Robert A. Osteoporosis in men: a review. Bone research, 2014, 2: 14001. 16. Health Promotion Administration, Ministry of Health and Welfare, Taiwan. Taiwan Osteoporosis Practice Guidelines, 2015. 17. BARTL, Reiner; BARTL, Christoph. Bone Disorders: Biology, Diagnosis, Prevention, Therapy. Springer, 2016. 18. RAUCH, Frank; GLORIEUX, Francis H. Osteogenesis imperfecta. The Lancet, 2004, 363.9418: 1377-1385. 19. KRASSAS, G. E. Idiopathic juvenile osteoporosis. Annals of the New York Academy of Sciences, 2000, 900.1: 409-412. 20. OPENSTAX COLLEGE. Anatomy and physiology. Rice University, 2013. 21. KUNTZ, Charles. Spine Fractures. Mayfield Clinic, 2016. 22. O'RAHILLY, Ronan; MÜLLER, Fabiola. Basic human anatomy: a regional study of human structure. WB Saunders Company, 1983. 23. KAYALIOGLU, Gulgun. The Vertebral Column and Spinal Meninges. In: The Spinal Cord. 2008. p. 17-36. 24. HOLDSWORTH, F. W. Fractures, dislocations, and fracture-dislocations of the spine. The Journal of Bone and Joint Surgery. British Volume, 1963, 45.1: 6-20. 25. DENIS, Francis. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. spine, 1983, 8.8: 817-831. 26. WONG, Cyrus C.; MCGIRT, Matthew J. Vertebral compression fractures: a review of current management and multimodal therapy. Journal of multidisciplinary healthcare, 2013, 6: 205. 27. ALEXANDRU, Daniela; SO, William. Evaluation and management of vertebral compression fractures. The Permanente Journal, 2012, 16.4: 46. 28. ISMAIL, A. A., et al. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. Osteoporosis International, 1999, 9.3: 206-213. 29. SILVERMAN, S. L. The clinical consequences of vertebral compression fracture. Bone, 1992, 13: S27-S31. 30. RUAN, Wen-dong, et al. Analysis on the risk factors of second fracture in osteoporosis-related fractures. Chinese Journal of Traumatology (English Edition), 2011, 14.2: 74-78. 31. BEDNAR, Timothy, et al. Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: scenarios and review of recent studies. Clinical therapeutics, 2013, 35.11: 1721-1727. 32. MALMIVAARA, Antti, et al. The treatment of acute low back pain—bed rest, exercises, or ordinary activity?. New England Journal of Medicine, 1995, 332.6: 351-355. 33. GENEV, Ivo K., et al. Spinal compression fracture management: a review of current treatment strategies and possible future avenues. Global spine journal, 2017, 7.1: 71-82. 34. DIAMOND, Terrence H.; CHAMPION, Bernard; CLARK, William A. Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. The American journal of medicine, 2003, 114.4: 257-265. 35. PAPA, John A. Conservative management of a lumbar compression fracture in an osteoporotic patient: a case report. The Journal of the Canadian Chiropractic Association, 2012, 56.1: 29. 36. JENSEN, Mary E., et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. American Journal of Neuroradiology, 1997, 18.10: 1897-1904. 37. CORTET, B., et al. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: an open prospective study. The Journal of rheumatology, 1999, 26.10: 2222-2228. 38. BARR, John D., et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine, 2000, 25.8: 923-928. 39. JENSEN, Mary E., et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. American Journal of Neuroradiology, 1997, 18.10: 1897-1904. 40. MATHIS, John M., et al. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. American journal of neuroradiology, 2001, 22.2: 373-381. 41. LAMY, O.; UEBELHART, B.; AUBRY-ROZIER, B. Risks and benefits of percutaneous vertebroplasty or kyphoplasty in the management of osteoporotic vertebral fractures. Osteoporosis International, 2014, 25.3: 807-819. 42. PAPANASTASSIOU, Ioannis D., et al. Comparing effects of kyphoplasty, vertebroplasty, and non-surgical management in a systematic review of randomized and non-randomized controlled studies. European Spine Journal, 2012, 21.9: 1826-1843. 43. HULME, Paul A., et al. Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine, 2006, 31.17: 1983-2001. 44. SANTIAGO, Fernando Ruiz, et al. Comparative review of vertebroplasty and kyphoplasty. World journal of radiology, 2014, 6.6: 329. 45. KASPER, David M. Kyphoplasty. In: Seminars in interventional radiology. Thieme Medical Publishers, 2010. p. 172. 46. ROBINSON, Yohan, et al. Complications and safety aspects of kyphoplasty for osteoporotic vertebral fractures: a prospective follow-up study in 102 consecutive patients. Patient safety in surgery, 2008, 2.1: 2. 47. KRÜGER, Antonio, et al. Height restoration and maintenance after treating unstable osteoporotic vertebral compression fractures by cement augmentation is dependent on the cement volume used. Clinical Biomechanics, 2013, 28.7: 725-730. 48. ENDER, Stephan Albrecht, et al. Percutaneous stabilization system osseofix® for treatment of osteoporotic vertebral compression fractures-clinical and radiological results after 12 months. PLoS One, 2013, 8.6: e65119. 49. OTTEN, Lucia A., et al. Comparison of balloon kyphoplasty with the new Kiva® VCF system for the treatment of vertebral compression fractures. Pain Physician, 2013, 16.5: E505-E512. 50. KRÜGER, Antonio, et al. Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: a cadaveric study. The Spine Journal, 2015, 15.5: 1092-1098. 51. NORIEGA, David, et al. Clinical outcome after the use of a new craniocaudal expandable implant for vertebral compression fracture treatment: one year results from a prospective multicentric study. BioMed research international, 2015, 2015. 52. POLIS, Bartosz, et al. Percutaneous extrapedicular vertebroplasty with expandable intravertebral implant in compression vertebral body fracture in pediatric patient. Child's Nervous System, 2016, 32.11: 2225-2231. 53. HSIEH, Jui-Yang, et al. Reduction of the domino effect in osteoporotic vertebral compression fractures through short-segment fixation with intravertebral expandable pillars compared to percutaneous kyphoplasty: a case control study. BMC musculoskeletal disorders, 2013, 14.1: 75. 54. YUE, James J.; GARG, Hitesh; BERTAGNOLI, Rudolf. Structural Osteoplasty: The Treatment of Vertebral Body Compression Fractures Using the OsseoFix Device. In: The Comprehensive Treatment of the Aging Spine. 2011. p. 232-238. 55. MANCA, Antonio. Vertebral augmentation with nitinol endoprosthesis: clinical experience with one year follow up in 40 patients. 2011. 56. NORIEGA, David, et al. Clinical outcome after the use of a new craniocaudal expandable implant for vertebral compression fracture treatment: one year results from a prospective multicentric study. BioMed research international, 2015, 2015. 57. NORIEGA, D. C., et al. Safety and clinical performance of kyphoplasty and SpineJack® procedures in the treatment of osteoporotic vertebral compression fractures: a pilot, monocentric, investigator-initiated study. Osteoporosis International, 2016, 27.6: 2047-2055. 58. KRÜGER, Antonio, et al. Percutaneous Dorsal Instrumentation of Vertebral Burst Fractures: Value of Additional Percutaneous Intravertebral Reposition—Cadaver Study. BioMed research international, 2015, 2015. 59. BOLZINGER, F., et al. Measurement of implant deployment and related forces in kyphoplasty by percutaneous approach. Clinical Biomechanics, 2014, 29.4: 463-467. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/72008 | - |
| dc.description.abstract | 人類到達一定年齡後,骨密度的下降被視為老化正常現象,骨質密度低於正常年輕女性平均兩個標準差以下,則被判患有骨質疏鬆症。當骨密度下降、骨骼間的孔隙變大,導致骨頭變得脆弱易斷,骨折的風險也隨之增加。在因骨質疏鬆造成的骨折中,接近一半比例發生在脊椎骨;當骨折發生於脊柱的前側即稱為壓迫性骨折。儘管壓迫性骨折不一定伴隨著骨頭斷裂,但椎體變形易造成脊柱曲度改變,甚至壓迫到神經引起下背痛。目前常見的壓迫性骨折治療方式可分為保守性及手術治療,保守性治療通常採取藥物搭配背架或物理治療等方式,但此方法僅對症狀輕微的患者有效,症狀嚴重者仍須採用手術治療。
主要手術治療方式為椎體成形術與椎體後凸成形術。椎體成形術是將骨水泥注入骨折處以增強支撐力,但此種作法僅能增加脊椎穩定性,無法恢復失去的高度;椎體後凸成形術則是先植入一氣球,將氣球擴張撐開椎體後再抽除,並將骨水泥注入空腔中,但氣球的方向較難控制且此方法仍存在骨水泥溢流的風險,因此市面上開始出現先植入具有擴張功能的撐開器,將椎體撐開後直接以骨水泥固定,並在術後將植入物留在椎骨中的治療方式。 目前市面上已有許多治療壓迫性骨折相關的植入物產品,其中效果反應最好的為SpineJack®千斤頂,但因其只具有垂直方向的擴張功能,且價格昂貴病患通常只植入一個植入物,使椎體撐開的效果受限,因此本研究期望可以設計出一同時具有水平及垂直擴張功能的椎體撐開器,以改良目前市面產品的問題。 本研究選用鈦合金作為植入物材料,透過軟體進行設計及有線元素分析法模擬撐開形狀,並依據模擬結果重複修改設計,將設計優化後再進行實品打樣及測試。目前研究的設計可分為八種版本,並成功打樣出其中五種版本,進行擴張測試。 在模擬結果中,版本2-2及版本3具有對稱的擴張形狀和良好的擴張幅度;但在進行實體樣品測試時卻無法達到相同效果,甚至發生在測試時樣品尚未觀察到撐開現象即直接斷裂的情況。推測原因為設計結構過強、加工誤差及實驗方法不妥,未來將嘗試更換加工方式及藉由調整桿件厚度和初始傾斜角度以降低設計結構的強度。 | zh_TW |
| dc.description.abstract | Osteoporosis is a bone disease which leads the bones to become porous and brittle. It is defined by the bone mineral density being two standard deviations below the average of young adults. After humans reach certain age, bone loss becomes a normal phenomenon. However, following the problem of population ageing, osteoporosis has become a common problem.
Due to osteoporosis, the bones become fragile and easily damaged. Among the fractures caused by osteoporosis, almost half of them occurs in the vertebrae, and the vertebral compression fracture is the most common one. Vertebral compression fracture may change the spine curvature and leads to chronic pain and limited mobility. The treatments of compression fracture can be divided into conservative treatment and surgical treatment. The conservative one is only adequate for patients with mild symptoms. Surgical treatment is needed in severe situations. In vertebroplasty, bone cement is injected to the vertebral body to increase the stabilization, but this treatment cannot recover the reduced height. In kyphoplasty, a balloon is placed and inflated in the vertebral body to restore the height and create a void. After the balloon being removed, bone cement is injected into the void. Although the height can be restored in this method, the position of balloon is hard to control and the risk of bone cement leakage still exists. Consequently, expandable intravertebral implants have been developed to replace the function of balloon. The implants are left in the vertebral body after surgery to provide better effect on height restoration. There have been several products on the market. However, most of the products are expensive and cannot provide enough supporting area. As a result, this study aims to develop an expandable vertebral implant with the function of both horizontal and vertical expansion. Titanium alloy is used as the material for the implant in this study. The implants was designed with drafting software, and deformation was simulated by finite element analysis method. After going through several times of modulation, implant samples were manufactured. Eight versions of implants have been developed in this study, and five of them were manufactured. Deformation was imposed on the samples with surgical instrument, mechanical testing machine, or self-made system. Among the eight versions, version 2-2 and 3 showed great potential in the result of FEA results. Nevertheless, the testing results of the samples were not as fine as expected. This could be referring to the manufacturing errors, testing method, and the over-designed structure. The modulation of the design of the implant is needed lower the structure stiffness, and different manufacturing method should be considered in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:18:54Z (GMT). No. of bitstreams: 1 ntu-107-R05548043-1.pdf: 6965898 bytes, checksum: 3d896b5205ae1437d36ac3fad1af17d4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Acknowledgments i
Chinese Abstract ii Abstract iv Chapter 1 Introduction 1 1.1 O s t e o p o r o si s 1 1.2 Vertebral Fractures 3 1.2.1 Anatomy of the Spine 3 1.2.2 Types of Vertebral Fractures 5 1.2.3 Compression Fracture 7 1.3 Compression Fracture Treatment 8 1.3.1 Conservative Treatment for Compression Fracture 8 1.3.2 Vertebroplasty 8 1.3.3 Kyphoplasty 9 1.4 Expandable Intravertebral Implant 9 1.5 Motivation 11 Chapter 2 Design History 12 2.1 Methodology 12 2.1.1 Design Concept of the Implant 12 2.1.2 Manufacturing 13 2.1.3 Deformation Test 14 2.2 Version 0 16 2.2.1 Finite Element Analysis 17 2.2.2 Manufacturing 18 2.2.3 Deformation Test 19 2.3 Version 1-1 20 2.3.1 Finite Element Analysis 21 2.4 Version 1-2 23 2.4.1 Finite Element Analysis 25 2.5 Version 1-3 26 2.5.1 Finite Element Analysis 28 2.6 Version 2-1 29 2.6.1 Finite Element Analysis 31 2.6.2 Manufacturing 33 2.6.3 Deformation Test 33 2.7 Version 2-2 35 2.7.1 Finite Element Analysis 37 2.7.2 Manufacturing 39 2.7.3 Deformation Test 40 2.8 Version 2-3 44 2.8.1 Finite Element Analysis 46 2.8.2 Manufacturing 48 2.8.3 Deformation Test 49 2.9 Version 3 52 2.9.1 Finite Element Analysis 54 2.9.2 Manufacturing 56 2.9.3 Deformation Test 56 2.10 Version 4 58 2.10.1 Finite Element Analysis 60 2.10.2 Manufacturing 62 2.10.3 Deformation Test 63 2.11 Surgical Instrument 65 2.11.1 Expansion-Driving Instrument 65 2.11.2 Bone Cement Injection Instrument 67 Chapter 3 Discussion 68 3.1 Design of the Implant 68 3.2 Manufacturing and Testing 69 3.3 Limitation and Future Work 70 Chapter 4 Conclusion 72 Reference 73 | |
| dc.language.iso | en | |
| dc.subject | 骨質疏鬆症 | zh_TW |
| dc.subject | 壓迫性骨折 | zh_TW |
| dc.subject | 椎體成形術 | zh_TW |
| dc.subject | 椎體撐開器 | zh_TW |
| dc.subject | 微創手術 | zh_TW |
| dc.subject | minimally invasive surgery | en |
| dc.subject | vertebral compression fracture | en |
| dc.subject | kyphoplasty | en |
| dc.subject | osteoporosis | en |
| dc.subject | expandable intravertebral implant | en |
| dc.title | 適用於脊椎壓迫性骨折椎體撐開器之開發 | zh_TW |
| dc.title | Development of an Expandable Intravertebral Implant for Vertebral Compression Fracture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴達明,林峻立 | |
| dc.subject.keyword | 骨質疏鬆症,壓迫性骨折,椎體成形術,椎體撐開器,微創手術, | zh_TW |
| dc.subject.keyword | osteoporosis,vertebral compression fracture,kyphoplasty,expandable intravertebral implant,minimally invasive surgery, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201803599 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
