Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71994
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳慧文(Hui-Wen Chen)
dc.contributor.authorWan-Ting Liaoen
dc.contributor.author廖婉廷zh_TW
dc.date.accessioned2021-06-17T06:18:14Z-
dc.date.available2020-11-13
dc.date.copyright2020-11-13
dc.date.issued2020
dc.date.submitted2020-10-12
dc.identifier.citationArranz, R., Coloma, R., Chichón, F.J., Conesa, J.J., Carrascosa, J.L., Valpuesta, J.M., Ortín, J., Martín Benito, J., 2012. The structure of native influenza virion ribonucleoproteins. Science 338, 1634-1637.
Authority, E.F.S., Prevention, E.C.f.D., Control, 2014. Highly pathogenic avian influenza A subtype H5N8. EFSA Journal 12, 3941.
Bachmann, M.F., Lutz, M.D., Layton, G.T., Harris, S.J., Fehr, T., Rescigno, M., Ricciardi‐Castagnoli, P., 1996. Dendritic cells process exogenous viral proteins and virus‐like particles for class I presentation to CD8+ cytotoxic T lymphocytes. European journal of immunology 26, 2595-2600.
Bachmann, M.F., Rohrer, U.H., Kundig, T.M., Burki, K., Hengartner, H., Zinkernagel, R.M., 1993. The influence of antigen organization on B cell responsiveness. Science 262, 1448-1451.
Benjamin, C., Brohlin, O., Shahrivarkevishahi, A., Gassensmith, J.J. 2020. Virus like particles: fundamental concepts, biological interactions, and clinical applications, In: Nanoparticles for Biomedical Applications. Elsevier, 153-174.
Böttcher-Friebertshäuser, E., Garten, W., Matrosovich, M., Klenk, H.D. 2014. The hemagglutinin: a determinant of pathogenicity, In: Influenza Pathogenesis and Control-Volume I. Springer, 3-34.
Bright, R.A., Carter, D.M., Daniluk, S., Toapanta, F.R., Ahmad, A., Gavrilov, V., Massare, M., Pushko, P., Mytle, N., Rowe, T., 2007. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine 25, 3871-3878.
Bullough, P.A., Hughson, F.M., Skehel, J.J., Wiley, D.C., 1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37-43.
Buonaguro, L., Tornesello, M., Tagliamonte, M., Gallo, R., Wang, L., Kamin-Lewis, R., Abdelwahab, S., Lewis, G., Buonaguro, F., 2006. Baculovirus-derived human immunodeficiency virus type 1 virus-like particles activate dendritic cells and induce ex vivo T-cell responses. Journal of virology 80, 9134 9143.
Carr, C.M., Kim, P.S., 1994. Flu Virus Invasion: Halfway There. Science 266, 234-236.
Chen, B.J., Leser, G.P., Morita, E., Lamb, R.A., 2007. Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. Journal of virology 81, 7111-7123.
Chen, C., Zhuang, X., 2008. Epsin 1 is a cargo-specific adaptor for the clathrinmediated endocytosis of the influenza virus. Proceedings of the National Academy of Sciences 105, 11790-11795.
Chen, J.-R., Ma, C., Wong, C.-H., 2011. Vaccine design of hemagglutinin glycoprotein against influenza. Trends in biotechnology 29, 426-434.
Chen, T., Zhang, R., 2015. Symptoms seem to be mild in children infected with avian influenza A (H5N6) and other subtypes. Journal of infection 71, 702-703.
Chen, Y.-T., Juang, R.-H., He, J.-L., Chu, W.-Y., Wang, C.-H., 2010. Detection of H6 influenza antibody by blocking enzyme-linked immunosorbent assay. Veterinary microbiology 142, 205-210.
Chin, P., Hoffmann, E., Webby, R., Webster, R., Guan, Y., Peiris, M., Shortridge, K., 2002. Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. Journal of virology 76, 507-516.
Chothe, S.K., Bhushan, G., Nissly, R.H., Yeh, Y.-T., Brown, J., Turner, G., Fisher, J., Sewall, B.J., Reeder, D.M., Terrones, M., 2017. Avian and human influenza virus compatible sialic acid receptors in little brown bats. Scientific reports 7,1-8.
Cimica, V., Galarza, J.M., 2017. Adjuvant formulations for virus-like particle (VLP) based vaccines. Clinical Immunology 183, 99-108.
De Vries, E., Tscherne, D.M., Wienholts, M.J., Cobos-Jimenez, V., Scholte, F., Garcia-Sastre, A., Rottier, P.J., De Haan, C.A., 2011. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLOS pathogens 7, e1001329.
Donis, R., Smith, G., Brown, I., Capua, I., Cattoli, G., Chen, H., Cox, N., Davis, C., Fouchier, R., Garten, R., 2009. Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: Divergence of clade 2· 2 viruses. Influenza and other Respiratory Viruses 3, 59-62.
Dou, D., Revol, R., Östbye, H., Wang, H., Daniels, R., 2018. Influenza A virus cell entry, replication, virion assembly and movement. Frontiers in immunology 9, 1581.
Durous, L., Rosa-Calatrava, M., Petiot, E., 2019. Advances in influenza virus-like particles bioprocesses. Expert Review of Vaccines 18, 1285-1300.
Gamblin, S.J., Skehel, J.J., 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. Journal of Biological Chemistry 285, 28403-28409.
Gómez-Puertas, P., Albo, C., Pérez-Pastrana, E., Vivo, A., Portela, A.n., 2000. Influenza virus matrix protein is the major driving force in virus budding. Journal of virology 74, 11538-11547.
Gopal, R., Schneemann, A. 2018. Production and application of insect virus-based VLPs, In: Virus Derived Nanoparticles for Advanced Technologies. Springer, 125-141.
Govorkova, E.A., Rehg, J.E., Krauss, S., Yen, H.-L., Guan, Y., Peiris, M., Nguyen, T.D., Hanh, T.H., Puthavathana, P., Long, H.T., 2005. Lethality to ferrets of H5N1 influenza viruses isolated from humans and poultry in 2004. Journal of virology 79, 2191-2198.
Guan, Y., Smith, G.J., 2013. The emergence and diversification of panzootic H5N1 influenza viruses. Virus research 178, 35-43.
Harrison, S.C., 2008. Viral membrane fusion. Nature structural molecular biology 15, 690-698.
Hause, B.M., Collin, E.A., Liu, R., Huang, B., Sheng, Z., Lu, W., Wang, D., Nelson, E.A., Li, F., 2014. Characterization of a novel influenza virus in cattle and swine: proposal for a new genus in the Orthomyxoviridae family. MBio 5, e00031-00014.
Hiono, T., Okamatsu, M., Yamamoto, N., Ogasawara, K., Endo, M., Kuribayashi, S., Shichinohe, S., Motohashi, Y., Chu, D.-H., Suzuki, M., 2016. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission. Veterinary microbiology 182, 108-115.
Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., San Chin, P., Peiris, M., Shortridge, K.F., Webster, R.G., 2000. Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? Journal of virology 74, 6309-6315.
Hu, C.-M.J., Chien, C.-Y., Liu, M.-T., Fang, Z.-S., Chang, S.-Y., Juang, R.-H., Chang, S.-C., Chen, H.-W., 2017. Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC biotechnology 17, 2.
Ip, H.S., Torchetti, M.K., Crespo, R., Kohrs, P., DeBruyn, P., Mansfield, K.G., Baszler, T., Badcoe, L., Bodenstein, B., Shearn-Bochsler, V., 2015. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014. Emerging infectious diseases 21, 886.
Isoda, N., Sakoda, Y., Kishida, N., Bai, G.-R., Matsuda, K., Umemura, T., Kida, H., 2006. Pathogenicity of a highly pathogenic avian influenza virus, A/chicken/Yamaguchi/7/04 (H5N1) in different species of birds and mammals. Archives of virology 151, 1267-1279.
Kim, J.-K., Seiler, P., Forrest, H.L., Khalenkov, A.M., Franks, J., Kumar, M., Karesh, W.B., Gilbert, M., Sodnomdarjaa, R., Douangngeun, B., 2008. Pathogenicity and vaccine efficacy of different clades of Asian H5N1 avian influenza A viruses in domestic ducks. Journal of virology 82, 11374-11382.
Kosik, I., Yewdell, J.W., 2019. Influenza hemagglutinin and neuraminidase: Yin–Yang proteins coevolving to thwart immunity. Viruses 11, 346.
Krammer, F., Smith, G.J., Fouchier, R.A., Peiris, M., Kedzierska, K., Doherty, P.C., Palese, P., Shaw, M.L., Treanor, J., Webster, R.G., 2018. Influenza (Primer). Nature Reviews: Disease Primers 4, 3.
Lam, T.T.-Y., Wang, J., Shen, Y., Zhou, B., Duan, L., Cheung, C.-L., Ma, C., Lycett, S.J., Leung, C.Y.-H., Chen, X., 2013. The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502, 241-244.
Lin, H.-T., Wang, C.-H., Chueh, L.-L., Su, B.-L., Wang, L.-C., 2015. Influenza A (H6N1) virus in dogs, Taiwan. Emerging infectious diseases 21, 2154.
Ling, F., Chen, E., Liu, Q., Miao, Z., Gong, Z., 2015. Hypothesis on the source, transmission and characteristics of infection of avian influenza A (H7N9) virus– based on analysis of field epidemiological investigation and gene sequence analysis. Zoonoses and public health 62, 29-37.
Liu, C., Eichelberger, M.C., Compans, R.W., Air, G.M., 1995. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. Journal of virology 69, 1099-1106.
Liu, C.-G., Liu, M., Liu, F., Lv, R., Liu, D.-F., Qu, L.-D., Zhang, Y., 2013. Emerging multiple reassortant H5N5 avian influenza viruses in ducks, China, 2008. Veterinary microbiology 167, 296-306.
Liu, T., Bi, Z., Wang, X., Li, Z., Ding, S., Bi, Z., Wang, L., Pei, Y., Song, S., Zhang, S., 2014. One family cluster of avian influenza A (H7N9) virus infection in Shandong, China. BMC infectious diseases 14, 98.
Liu, W.-C., Liu, Y.-Y., Chen, T.-H., Liu, C.-C., Jan, J.-T., Wu, S.-C., 2016. Multisubtype influenza virus-like particles incorporated with flagellin and granulocyte-macrophage colony-stimulating factor for vaccine design. Antiviral research 133, 110-118.
Liu, Y.V., Massare, M.J., Pearce, M.B., Sun, X., Belser, J.A., Maines, T.R., Creager, H.M., Glenn, G.M., Pushko, P., Smith, G.E., 2015. Recombinant virus-like particles elicit protective immunity against avian influenza A (H7N9) virus infection in ferrets. Vaccine 33, 2152-2158.
López-Macías, C., 2012. Virus-like particle (VLP)-based vaccines for pandemic influenza: performance of a VLP vaccine during the 2009 influenza pandemic. Human vaccines immunotherapeutics 8, 411-414.
Luczo, J.M., Tachedjian, M., Harper, J.A., Payne, J.S., Butler, J.M., Sapats, S.I., Lowther, S.L., Michalski, W.P., Stambas, J., Bingham, J., 2018. Evolution of high pathogenicity of H5 avian influenza virus: haemagglutinin cleavage siteselection of reverse-genetics mutants during passage in chickens. Scientific reports 8, 1-13.
Masavuli, M.G., Wijesundara, D.K., Torresi, J., Gowans, E.J., Grubor-Bauk, B., 2017. Preclinical development and production of virus-like particles as vaccine candidates for hepatitis C. Frontiers in microbiology 8, 2413.
Meng, Z., Han, R., Hu, Y., Yuan, Z., Jiang, S., Zhang, X., Xu, J., 2014. Possible pandemic threat from new reassortment of influenza A (H7N9) virus in China. Eurosurveillance 19, 20699.
Nishi, T., Okamatsu, M., Sakurai, K., CHU, H.D., Thanh, L.P., van NGUYEN, L., van HOANG, N., Thi, D.N., Sakoda, Y., Kida, H., 2013. Genetic analysis of an H5N2 highly pathogenic avian influenza virus isolated from a chicken in a live bird market in Northern Vietnam in 2012. Journal of Veterinary Medical Science, 13-0311.
Organization, W.H., 2008. Avian influenza (' bird flu')-Fact sheet. http://www. who. int/mediacentre/factsheets/avian_influenza/en/index. html.
Pan, M., Gao, R., Lv, Q., Huang, S., Zhou, Z., Yang, L., Li, X., Zhao, X., Zou, X., Tong, W., 2016. Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: virological and clinical findings. Journal of Infection 72, 52-59.
Pan, Y.-S., Wei, H.-J., Chang, C.-C., Lin, C.-H., Wei, T.-S., Wu, S.-C., Chang, D.-K., 2010. Construction and Characterization of Insect Cell-Derived Influenza VLP: Cell Binding, Fusion, and EGFP Incorporation. BioMed research international 2010.
Pasick, J., Berhane, Y., Joseph, T., Bowes, V., Hisanaga, T., Handel, K., Alexandersen, S., 2015. Reassortant highly pathogenic influenza A H5N2 virus containing gene segments related to Eurasian H5N8 in British Columbia, Canada, 2014. Scientific reports 5, 9484.
Patel, K.G., Swartz, J.R., 2011. Surface functionalization of virus-like particles by direct conjugation using azide− alkyne click chemistry. Bioconjugate chemistry 22, 376-387.
Perkins, L., Swayne, D., 2003. Varied pathogenicity of a Hong Kong-origin H5N1 avian influenza virus in four passerine species and budgerigars. Veterinary pathology 40, 14-24.
Perrone, L.A., Ahmad, A., Veguilla, V., Lu, X., Smith, G., Katz, J.M., Pushko, P., Tumpey, T.M., 2009. Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. Journal of virology 83, 5726-5734.
Plague, F., Aviaire, G., 2009. Avian Influenza. Virology Journal 5, 54.
Pushko, P., Sun, X., Tretyakova, I., Hidajat, R., Pulit-Penaloza, J.A., Belser, J.A., Maines, T.R., Tumpey, T.M., 2016. Mono-and quadri-subtype virus-like particles (VLPs) containing H10 subtype elicit protective immunity to H10 influenza in a ferret challenge model. Vaccine 34, 5235-5242.
Rajão, D.S., Pérez, D.R., 2018. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Frontiers in microbiology 9, 123.
Rossman, J.S., Jing, X., Leser, G.P., Balannik, V., Pinto, L.H., Lamb, R.A., 2010. Influenza virus m2 ion channel protein is necessary for filamentous virion formation. Journal of virology 84, 5078-5088.
Rossman, J.S., Lamb, R.A., 2011. Influenza virus assembly and budding. Virology 411, 229-236.
Ruedl, C., Storni, T., Lechner, F., Bächi, T., Bachmann, M.F., 2002. Cross‐presentation of virus‐like particles by skin‐derived CD8–dendritic cells: a dispensable role for TAP. European journal of immunology 32, 818-825.
Senne, D., Panigrahy, B., Kawaoka, Y., Pearson, J., Süss, J., Lipkind, M., Kida, H., Webster, R., 1996. Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian diseases, 425-437.
Sha, B., Luo, M., 1997. Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nature structural biology 4, 239-244.
Shakin-Eshleman, S.H., Spitalnik, S.L., Kasturi, L., 1996. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked coreglycosylation efficiency. Journal of Biological Chemistry 271, 6363-6366.
Shin, J.-H., Woo, C., Wang, S.-J., Jeong, J., An, I.-J., Hwang, J.-K., Jo, S.-D., Do Yu, S., Choi, K., Chung, H.-M., 2015. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea. Journal of Microbiology 53, 475-480.
Shirbaghaee, Z., Bolhassani, A., 2016. Different applications of virus‐like particles in biology and medicine: vaccination and delivery systems. Biopolymers 105, 113-132.
Shortridge, K. 1992. Pandemic influenza: a zoonosis? In: Seminars in respiratory infections, 7, 11.
Souza, A.C., Vasques, R.M., Inoue-Nagata, A.K., Lacorte, C., Maldaner, F.R., Noronha, E.F., Nagata, T., 2013. Expression and assembly of Norwalk virus-like particles in plants using a viral RNA silencing suppressor gene. Applied microbiology and biotechnology 97, 9021-9027.
Sridhar, S., Brokstad, K.A., Cox, R.J., 2015. Influenza vaccination strategies: comparing inactivated and live attenuated influenza vaccines. Vaccines 3, 373-389.
Stray, S.J., Cummings, R.D., Air, G.M., 2000. Influenza virus infection of desialylated cells. Glycobiology 10, 649-658.
Sturm-Ramirez, K.M., Ellis, T., Bousfield, B., Bissett, L., Dyrting, K., Rehg, J.E., Poon, L., Guan, Y., Peiris, M., Webster, R.G., 2004. Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. Journal of virology 78, 4892-4901.
Tang, J., Zhang, J., Zhou, J., Zhu, W., Yang, L., Zou, S., Wei, H., Xin, L., Huang, W., Li, X., 2019. Highly pathogenic avian influenza H7N9 viruses with reduced susceptibility to neuraminidase inhibitors showed comparable replication capacity to their sensitive counterparts. Virology journal 16, 87.
Thompson, C.M., Petiot, E., Mullick, A., Aucoin, M.G., Henry, O., Kamen, A.A., 2015. Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC biotechnology 15, 31.
To, K.K., Chan, J.F., Chen, H., Li, L., Yuen, K.-Y., 2013. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. The Lancet infectious diseases 13, 809-821.
Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., Yang, H., Chen, X., Recuenco, S., Gomez, J., 2013. New world bats harbor diverse influenza A viruses. PLoS pathogens 9, e1003657.
Tretyakova, I., Hidajat, R., Hamilton, G., Horn, N., Nickols, B., Prather, R.O., Tumpey, T.M., Pushko, P., 2016. Preparation of quadri-subtype influenza virus-like particles using bovine immunodeficiency virus gag protein. Virology 487, 163-171.
Tseng, Y.-F., Weng, T.-C., Lai, C.-C., Chen, P.-L., Lee, M.-S., Hu, A.Y.-C., 2018. A fast and efficient purification platform for cell-based influenza viruses by flowthrough chromatography. Vaccine 36, 3146-3152.
Ungaro, F., Conte, C., Quaglia, F., Tornesello, M.L., Buonaguro, F.M., Buonaguro, L., 2013. VLPs and particle strategies for cancer vaccines. Expert review of vaccines 12, 1173-1193.
van Hoogevest, P., 2019. APV Focus Group Drug Delivery.
Verhagen, J., van der Jeugd, H., Nolet, B., Slaterus, R., Kharitonov, S., de Vries, P.,
Vuong, O., Majoor, F., Kuiken, T., Fouchier, R., 2015. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A (H5N8) virus in the Netherlands, 2014, within the context of global flyways. Eurosurveillance 20, 21-32.
Warfield, K.L., Swenson, D.L., Demmin, G., Bavari, S., 2005. Filovirus-like particles as vaccines and discovery tools. Expert review of vaccines 4, 429-440.
Wei, B., Wei, Y., Zhang, K., Wang, J., Xu, R., Zhan, S., Lin, G., Wang, W., Liu, M., Wang, L., 2009. Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell penetrating peptide. Biomedicine pharmacotherapy 63, 313-318.
Wei, S.-H., Yang, J.-R., Wu, H.-S., Chang, M.-C., Lin, J.-S., Lin, C.-Y., Liu, Y.-L., Lo, Y.-C., Yang, C.-H., Chuang, J.-H., 2013. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. The lancet Respiratory medicine 1, 771-778.
Wiley, D.C., Skehel, J.J., 1987. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual review of biochemistry 56, 365-394.
Yan, D., Wei, Y.-Q., Guo, H.-C., Sun, S.-Q., 2015. The application of virus-like particles as vaccines and biological vehicles. Applied microbiology and biotechnology 99, 10415-10432.
Yang, P., Pang, X., Deng, Y., Ma, C., Zhang, D., Sun, Y., Shi, W., Lu, G., Zhao, J., Liu, Y., 2013. Surveillance for avian influenza A (H7N9), Beijing, China, 2013. Emerging infectious diseases 19, 2041.
Yang, Z.-F., Mok, C.K., Peiris, J.S., Zhong, N.-S., 2015. Human infection with a novel avian influenza A (H5N6) virus. New England Journal of Medicine 373, 487- 489.
Yao, L., Wang, S., Su, S., Yao, N., He, J., Peng, L., Sun, J., 2012. Construction of a baculovirus-silkworm multigene expression system and its application on producing virus-like particles. PLoS one 7, e32510.
Yu, H., Cowling, B.J., Feng, L., Lau, E.H., Liao, Q., Tsang, T.K., Peng, Z., Wu, P., Liu, F., Fang, V.J., 2013. Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. The Lancet 382, 138-145.
Zeltins, A., 2013. Construction and characterization of virus-like particles: a review. Molecular biotechnology 53, 92-107.
Zhang, S., Cubas, R., Li, M., Chen, C., Yao, Q., 2009. Virus-like particle vaccine activates conventional B2 cells and promotes B cell differentiation to IgG2a producing plasma cells. Molecular immunology 46, 1988-2001.
Zhao, B., Zhang, X., Zhu, W., Teng, Z., Yu, X., Gao, Y., Wu, D., Pei, E., Yuan, Z., Yang, L., 2014. Novel avian influenza A (H7N9) virus in tree sparrow, Shanghai, China, 2013. Emerging infectious diseases 20, 850.
Zhao, D., Sun, B., Jiang, H., Sun, S., Kong, F., Ma, Y., Jiang, L., Bai, L., Chen, X., Yang, P., 2015. Enterovirus71 virus‐like particles produced from insect cells and purified by multistep chromatography elicit strong humoral immune responses in mice. Journal of applied microbiology 119, 1196-1205.
Zhao, G., Gu, X., Lu, X., Pan, J., Duan, Z., Zhao, K., Gu, M., Liu, Q., He, L., Chen, J., 2012. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China. PLoS one 7, e46183.
Zhao, K., Gu, M., Zhong, L., Duan, Z., Zhang, Y., Zhu, Y., Zhao, G., Zhao, M., Chen, Z., Hu, S., 2013. Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Veterinary microbiology 163, 351-357.
Zhu, W.-Z., Wen, Y.-C., Lin, S.-Y., Chen, T.-C., Chen, H.-W., 2020. Anti-Influenza Protective Efficacy of a H6 Virus-Like Particle in Chickens. Vaccines 8, 465.
Zitzmann, J., Sprick, G., Weidner, T., Schreiber, C., Czermak, P., 2017. Process optimization for recombinant protein expression in insect cells. New Insights into Cell Culture Technology; Gowder, SJT, Ed.; InTech Open: Rijeka, Croatia, 43-98.
Zou, S., Gao, R., Zhang, Y., Li, X., Chen, W., Bai, T., Dong, L., Wang, D., Shu, Y., 2016. Molecular characterization of H6 subtype influenza viruses in southern China from 2009 to 2011. Emerging microbes infections 5, 1-8.
Zou, W., Guo, X., Li, S., Yang, Y., Jin, M. 2012. Complete genome sequence of a novel natural recombinant H5N5 influenza virus from ducks in central China. American society for microbiology, 86, 13878.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71994-
dc.description.abstract過去幾年,禽流感在家禽健康與公共衛生造成巨大的威脅,並導致大量的經濟損失,由於禽流感病毒的迅速傳播能力、高適應能力及快速變異,野外的野鳥及家禽皆可發現禽流感病毒的蹤影。而最有效的控制疾病方式是透過疫苗施打來達到預防的效果,疫苗中常使用的抗原種類之一為類病毒顆粒 (virus-like particles, VLPs),因其無法在宿主體內複製並傳播的特性使之成為疫苗研發的目標。在此篇研究中,抗原為台灣及各國常見的H5N6,H6N1及H7N9亞型禽流感病毒之全長血球凝集素(HA)蛋白,及H6N1的基質(M1)蛋白,基因分別選殖在不同桿狀病毒載體上共感染昆蟲細胞所形成的三價類病毒顆粒 (H567-M1 VLPs),另外是將H5N6,H6N1和H7N9全長HA與牛白血病病毒的gag polyprotein同時選殖在一個桿狀病毒載體上,以此生產出三價類病毒顆粒 (H567-Bgag VLPs)。我們發現利用Sf21細胞表現此些蛋白質的情況比使用HighFive細胞的情況穩定,也發現H567-Bgag VLPs的表現較H567-M1 VLPs穩定;另外使用免疫螢光染色法確定H5/HA, H6/HA及H7/HA皆有被細胞表現;並且利用陰離子交換樹脂進行純化,將桿狀病毒與VLPs分離,但此效果並不顯著。此外在HA活性表現上H567-Bgag VLPs為每25 l 中有8192 HAU,也比H567-M1的64 HAU高;而在形態方面,H567-Bgag VLPs的大小約為145 nm,而H567-M1 VLPs則是91 nm。總結上述結果,H567-Bgag VLPs的表現較H567-M1 VLPs穩定且量多,將作為繼續生產三價類病毒顆粒來進行後續的疫苗試驗,確認其作為抗原的效果。zh_TW
dc.description.abstractAvian influenza (AI) has posed a serious threat to the poultry industry and public health, and has resulted in tremendous economic and social impacts in the last few decades. Avian influenza viruses (AIVs) are widespread in domestic and wild birds due to their highly contagious property and frequent adaptive evolution. To prevent and control the AIVs, vaccination is one of the most effective ways. As for the antigens being used in vaccines, virus-like particles (VLPs) are promising candidates due to their native and non-infective natures. Here, we developed a trivalent VLP displaying the hemagglutinin (HA) of H5, H6 and H7 AIVs, the most common AIV subtypes found in Taiwan and other countries. Full-length HA protein genes of AIVs H5N6, H6N1, H7N9 and the matrix protein 1 (M1) gene of AIV H6N1 were cloned onto baculoviral vectors separately, and the trivalent VLPs (H567-M1 VLPs) were then generated by co-infecting cells with three individual recombinant baculoviruses. On the other hand, full length of HA protein genes and gag protein gene from the bovine leukemia virus were cloned onto the baculoviral vector, and the trivalent VLPs (H567-Bgag VLPs) were then generated by infecting insect cells with one single recombinant baculoviruses. The results showed that, use of Spodoptera frugiperda 21 (Sf21) culture for infection improved the expression yield of trivalent VLPs, as compared with the HighFive cells. The expression of H567-Bgag VLPs was more stable than that of H567-M1 VLPs. Furthermore, immunofluorescence assay was used to determine H5/HA, H6/HA and H7/HA expression in Sf21 cells and each subtype were expressed successfully. Then, VLPs were purified from the Sf21 culture supernatant by anion exchange chromatography. The morphology of VLPs was confirm by TEM. The size of H567-M1 VLPs were 91 nm and that of H567-Bgag VLPs’ was 145 nm. The hemagglutination activity of H567-M1 VLPs and H567-Bgag VLPs were 64 HAU per 25 l and 8192 HAU per 25 l after purification. In summary, we developed a versatile VLP platform displaying HA antigens of multiple subtypes. Multivalent VLP antigens with high quality are anticipated to show promises in the application of vaccine development for disease control.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:18:14Z (GMT). No. of bitstreams: 1
U0001-1210202013512800.pdf: 58659353 bytes, checksum: dae590cceda1555191a23904ce7d2502 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
誌謝 ................................................................................................................................ I
中⽂摘要 ...................................................................................................................... II
Abstract ........................................................................................................................ IV
Chapter 1. Introduction .................................................................................................. 1
1.1 Avian influenza virus ....................................................................................... 1
1.1.1 H5 influenza virus .......................................................................................... 2
1.1.2 H6 influenza virus .......................................................................................... 3
1.1.3 H7 influenza virus .......................................................................................... 4
1.2 Virus structure and components ........................................................................ 5
1.3 Life cycle of influenza virus .............................................................................. 5
1.4 Hemagglutinin of influenza virus ...................................................................... 7
1.4.1 Glycosylation of hemagglutinin ......................................................................... 9
1.5 Matrix protein of influenza virus ..................................................................... 10
1.6 Virus-like particles (VLPs) ............................................................................. 11
1.6.1 VLPs expression systems ............................................................................... 12
1.6.2 Production and purification of baculovirus expression system ............................... 13
1.6.3 Applications of VLPs .................................................................................... 14
1.7 Objectives of this study .................................................................................. 15
Chapter 2. Materials and Methods ............................................................................... 17
2.1 Cell culture .......................................................................................................... 17
2.2 Influenza virus genes (VLP strains) ........................................................................ 17
2.3 Cloning of H5-HA and H567-Bgag genes and the generation of recombinant
baculoviruses ............................................................................................................. 18
2.4 Plaque assay ......................................................................................................... 19
2.5 Optimization of expression conditions of H567-M1 VLPs and H567-Bgag VLPs ..... 19
2.6 VLPs purification ................................................................................................. 20
2.7 Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and western
blot ........................................................................................................................... 21
2.8 Bradford protein quantification assay ..................................................................... 22
2.9 Immunofluorescence assay (IFA) ........................................................................... 23
2.10 Hemagglutination (HA) test ................................................................................. 24
2.11 Transmission electronic microscopy (TEM) and dynamic light scattering (DLS) ..... 24
Chapter 3. Results ........................................................................................................ 25
3.1 H5-HA construction and expression ................................................................ 25
3.2 Optimization the infection conditions of H567-M1 VLPs in insect cells ............. 26
3.3 H567-Bgag construction and expression .......................................................... 27
3.4 Optimization the infection condition of H567-Bgag VLPs in insect cells ............ 28
3.5 Purification of H567-M1 VLPs and H567-Bgag VLPs ...................................... 28
3.6 Characterization of H567-M1 VLPs and H567-Bgag VLPs ............................... 29
Chapter 4 Discussion ................................................................................................... 31
Chapter 5 Figures and tables ....................................................................................... 35
Chapter 6 References ................................................................................................... 55
dc.language.isoen
dc.subject三價類病毒顆粒zh_TW
dc.subjectH5亞型禽流感病毒zh_TW
dc.subjectH6亞型禽流感病毒zh_TW
dc.subjectH7亞型禽流感病毒zh_TW
dc.subject血球凝集素zh_TW
dc.subjectH5 avian influenza virusen
dc.subjecttrivalent virus-like particlesen
dc.subjecthemagglutininen
dc.subjectH7 avian influenza virusen
dc.subjectH6 avian influenza virusen
dc.title禽流感H5/H6/H7亞型三價類病毒顆粒之製備與分析zh_TW
dc.titleGeneration and Characterization of H5/H6/H7 Trivalent Avian Influenza Virus-like Particlesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王金和(Ching-Ho Wang),張世宗(Shih-Chung Chang)
dc.subject.keywordH5亞型禽流感病毒,H6亞型禽流感病毒,H7亞型禽流感病毒,血球凝集素,三價類病毒顆粒,zh_TW
dc.subject.keywordH5 avian influenza virus,H6 avian influenza virus,H7 avian influenza virus,hemagglutinin,trivalent virus-like particles,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202004255
dc.rights.note有償授權
dc.date.accepted2020-10-13
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
U0001-1210202013512800.pdf
  未授權公開取用
57.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved