請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71970
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊爵因(Jiue-in Yang) | |
dc.contributor.author | Chi-shuen Chang | en |
dc.contributor.author | 張祁舜 | zh_TW |
dc.date.accessioned | 2021-06-17T06:17:09Z | - |
dc.date.available | 2018-09-03 | |
dc.date.copyright | 2018-09-03 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-21 | |
dc.identifier.citation | 朱耀沂、趙榮台. 1995. 進口木才之小蠹蟲及長小蠹蟲. 林業叢刊.
林明瑩、吳雅芳、陳昇寬. 2010. 咖啡果小蠹之監測及田間誘殺試驗. 臺南區農業改良場研究彙報, 35-44. 林明瑩、陳昇寬. 2015. 咖啡果小蠹之防治藥劑研究. 臺南區農業改良場研究彙報: 38-44. 林清山. 2006. 台大實驗林杉木林中小蠹蟲種類及族群變化. 臺灣大學昆蟲學研究所學位論文: 1-80. 林清山、吳文哲. 2010. 台大實驗林內茅埔營林區杉木 (Cunninghamia lanceolata) 林之小蠹蟲種類調查 (鞘翅目: 象鼻蟲科: 小蠹蟲亞科). 臺灣昆蟲 30: 203-18. 林清山、吳文哲、陳啟予、陸聲山、施欣慧. 2015. 日月潭環潭區常見食菌性小蠹蟲之初探. 林業研究專訊 22: 26-31. 施欣慧、林清山、陳啟予、陸聲山. 2015. 菌蠹蟲之生態及其對森林之危害. 林業研究專訊 22: 22-5. 唐立正、黃育仁. 2005. 蟲生線蟲在害蟲防治之應用. 苗栗區農業專訊: 2-6. 殷惠芬、黃复生、李兆麟. 1984. 中國經濟昆蟲志. 第二十九冊 (鞘翅目小蠹科). 北京: 科學出版社: 18-22. 黃尹則. 2011. 台灣長喙殼菌及相關類群真菌之鑑定. 中興大學植物病理學系所學位論文: 1-117. 黃尹則、李涵荺、施欣慧、林俞廷、陳啟予. 2014. 臺灣之長喙殼菌類真菌. 真菌資源及其永續利用研討會專刊: 116-30. 劉藍玉、楊正澤. 2005. 竹木材檢疫重要蠹蟲類 (鞘翅目) 害蟲介紹. 植物重要防檢疫害蟲診斷鑑定研習會專刊 (五). 行政院農業委員會動植物防疫檢疫局, 國立中興大學昆蟲學系編印: 35-54. Abd-Elgawad, M. M., Askary. T. H., and Coupland. J. 2017. Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. CABI. Adams, A. S., Currie, C. R., Cardoza, Y., Klepzig, K. D., and Raffa, K. F. 2009. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Canadian Journal of Forest Research 39: 1133-47. Adams, A. S., Boone, C. K., Bohlmann, J., and Raffa, K. F. 2011. Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life histories. Journal of Chemical Ecology 37: 808-17. Anderson, R., Linder, K., and Peregrine, A. 1998. Halicephalobus gingivalis (Stefanski, 1954) from a fatal infection in a horse in Ontario, Canada with comments on the validity of H. deletrix and a review of the genus. Parasite 5: 255-61. Arthurs. S., Heinz, K., and Prasifka, J. 2004. An analysis of using entomopathogenic nematodes against above-ground pests. Bulletin of Entomological Research 94: 297-306. Baliński, A., Sun, Y., and Dzik J. 2013. Traces of marine nematodes from 470 million years old Early Ordovician rocks in China. Nematology 15: 567-74. Bateman, C., and Hulcr, J. 2017. A guide to Florida’s common bark and ambrosia beetles. In.: UF/IFAS School of Forest Resources and Conservation. Bedding, R. 1967. Parasitic and free-living cycles in entomogenous nematodes of the genus Deladenus. Nature 214: 174. Beaver, R. A., Wilding, N., Collins, N., Hammond, P., and Webber, J. 1989. Insect-fungus relationships in the bark and ambrosia beetles. Insect-fungus interactions, 121-43. Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M. and Frisse, L. M. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392: 71. Brockerhoff, E. G., Jones, D. C., Kimberley, M. O., Suckling, D. M., and Donaldson, T. 2006. Nationwide survey for invasive wood-boring and bark beetles (Coleoptera) using traps baited with pheromones and kairomones. Forest Ecology and Management 228: 234-40. Burman, M. 1982. Neoaplectana carpocapsae: toxin production by axenic insect parasitic nematodes. Nematologica 28: 62-70. Cardoza, Y. J., Moser, J. C., Klepzig, K. D., and Raffa, K.F. 2008. Multipartite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environmental Entomology 37: 956-63. Carrillo, D., Duncan, R., Ploetz, J., Campbell, A., Ploetz, R., and Peña, J. 2014. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathology 63: 54-62. Chaubey, A. 2015. Status and Scope of Entomopathogenic Nematodes in India and Abroad. In. 11th JK Science Congress 2015. Chénier, J., and Philogene, B. 1989. Evaluation of three trap designs for the capture of conifer-feeding beetles and other forest Coleoptera. The Canadian Entomologist 121, 159-67. Cobb, N. A. 1921. Howardula benigna; A nema parasite of the cucumber-beetle. Science 54: 667-70. Cooperband, M. F., Stouthamer, R., Carrillo, D., Eskalen, A., Thibault, T., Cossé, A. A., Castrillo, L. A., Vandenberg, J. D., and Rugman‐Jones, P. F. 2016. Biology of two members of the Euwallacea fornicatus species complex (Coleoptera: Curculionidae: Scolytinae), recently invasive in the USA, reared on an ambrosia beetle artificial diet. Agricultural and Forest Entomology 18: 223-37. Dillman, A. R., Chaston, J. M., Adams, B. J., Ciche, T. A., Goodrich-Blair, H., Stock, S. P., and Sternberg, P. W. 2012. An entomopathogenic nematode by any other name. PLoS Pathogens 8: e1002527. Eskalen, A., Stouthamer, R., Lynch, S. C., Rugman-Jones, P. F., Twizeyimana, M., Gonzalez, A., and Thibault, T. 2013. Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Disease 97: 938-51. Floyd, R., Abebe, E., Papert, A., and Blaxter, M. 2002. Molecular barcodes for soil nematode identification. Molecular ecology 11: 839-50. Freeman, S., Protasov, A., Sharon, M., Mohotti, K., Eliyahu, M., Okon-Levy, N.,Maymon, M., and Mendel, Z. 2012. Obligate feed requirement of Fusarium sp. nov., an avocado wilting agent, by the ambrosia beetle Euwallacea aff. fornicata. Symbiosis 58: 245-51. Freeman, S., Sharon, M., Maymon, M., Mendel, Z., Protasov, A Aoki, T., Eskalen, A., and O’Donnell, K. 2013. Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia 105: 1595-606. Gardiner, C., Koh, D., and Cardella, T. 1981. Micronema in man: third fatal infection. The American journal of tropical medicine and hygiene 30: 586-9. Georgis, R., and Kaya, H. K. 1998. Formulation of entomopathogenic nematodes. In. Formulation of Microbial Biopesticides. Springer, 289-308. Gibson, C. M., and Hunter, M. S. 2010. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters 13: 223-34. Gomez, D.F., Rabaglia, R.J., Fairbanks, K.E., and Hulcr, J. 2018. North American Xyleborini north of Mexico: a review and key to genera and species (Coleoptera, Curculionidae, Scolytinae). ZooKeys 768: 19. Goodrich-Blair, H., Clarke, D., Grewal, P., and Ciche, T. 2009. Methods in Investigating Nematode–Bacterium–Insect Symbiosis. Insect Pathogens: Molecular Approaches and Techniques: 241. Hebert, P. D., Stoeckle, M.Y., Zemlak, T. S., and Francis, C. M. 2004. Identification of birds through DNA barcodes. PLoS biology 2: e312. Hofstetter, R. W., Moser, J., and Blomquist, S. 2014. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi. Biodiversity Series 12: 165-176. Hofstetter, R. W., Dinkins-Bookwalter, J., Davis, T. S., and Klepzig, K. D. 2015. Symbiotic associations of bark beetles. In. Bark Beetles. Elsevier: 209-45. Hoogstraten, J., and Young, W. G. 1975. Meningo-encephalomyelitis due to the saprophagous nematode, Micronema deletrix. Canadian Journal of Neurological Sciences 2: 121-6. Hopper, B. E., and Cairns, E. J. 1959. Taxonomic keys to plant, soil and aquatic nematodes. Holterman, M., Van Der Wurff, A., Van Den Elsen, S., Van Megen, H., Bongers, T, Holovachov, O., Bakker, J., and Helder, J. 2006. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular biology and evolution 23: 1792-800. Hu, X., Yu, J., Wang, C., and Chen, H. 2014. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 5: 455-65. Huelsenbeck, J. P., and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-5. Hunt, D. J. 1993. Aphelenchida, Longidoridae and Trichodoridae: Their systematics and bionomics. CAB International. Isaza, R., Schiller, C. A., Stover, J., Smith, P. J., and Greiner, E. C. 2000. Halicephalobus gingivalis (Nematoda) infection in a Grevy's zebra (Equus grevyi). Journal of Zoo and Wildlife Medicine 31: 77-81. Kandasamy, D., Gershenzon, J., and Hammerbacher, A. 2016. Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. Journal of Chemical Ecology 42: 952-69. Kanzaki, N. 2017. Current status of entomophilic nematode survey in Japan. In. Species Diversity of Animals in Japan. Springer: 285-317. Kanzaki, N., Aikawa, T., Maehara, N., and Ichihara, Y. 2011. An inoculation experiment of Japanese Bursaphelenchus nematodes on Japanese black and red pine, Pinus thunbergii and P. densiflora. Journal of forest research 16: 325-30. Kanzaki, N., and Futai, K. 2002. A PCR primer set for determination of phylogenetic relationships of Bursaphelenchus species within the xylophilus group. Nematology 4: 35-41. Kanzaki, N., and Giblin-Davis, R. M. 2014. Phylogenetic status and morphological characters of Rhabditolaimus anoplophorae (Rhabditida: Diplogastridae). Journal of nematology 46: 44. Kanzaki, N., and Kosaka, H. 2009. Relationship between the nematodes and bark and the ambrosia beetles. Journal of the Japanese Forest Society 91: 446-60. Kanzaki, N., Masuya, H., Taki, H., Okabe, K., and Chen, C. 2013. Description of Ruehmaphelenchus formosanus n. sp.(Tylenchina: Aphelenchoididae) isolated from Euwallacea fornicates from Taiwan. Nematology 15: 895-906. Kanzaki, N., Woodruff, G. C., Akiba, M., and Maehara, N. 2015. Diplogasteroides asiaticus n. sp. is associated with Monochamus alternatus in Japan. Journal of nematology 47: 105. Kaya, H. K., and Gaugler, R. 1993. Entomopathogenic nematodes. Annual review of entomology 38: 181-206. Kearse, M., Moir, R., Wilson, A. Stones-Havas, St., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., and Duran, Chris. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-9. Kiontke, K., and Sudhaus, W. 2006. Ecology of Caenorhabditis species. WormBook 9: 1-14. Lambshead, P. 1993. Recent developments in marine benthic biodiversity reserch. Oceanis 19: 5-24. Lichtfouse, E. S. 2010. Organic Farming, Climate Change and Soil Science, Vol. 3. In.: Springer. Lindquist, E. 1967. Mites and regulation of bark beetle populations. Proc. 2nd Int. Congr. Acarol., 1967: 389-99. Lortkipanidze, M., Chkhubianishvili, T., and Burjanadze, M. 2010. Isolation of entomopathogenic nematodes from the soil. Bull. Georg. Natl. Acad. Sci 4. Massey, C.L. 1974. Biology and taxonomy of nematode parasites and associates of bark beetles in the United States. Maehara, N., and Futai, K. 1997. Effect of fungal interactions on the numbers of the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), carried by the Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae). Fundamental and applied Nematology 20: 611-8. Manzanilla-López, R. H., and Marbán-Mendoza, N. 2012. Practical plant nematology. Montecillo, Texcoco: Biblioteca Basica de Agricultura. Massey, C. L. 1974. Biology and taxonomy of nematode parasites and associates of bark beetles in the United States. Mayorquin, J. S., Carrillo, J. D., Twizeyimana, M., Peacock, B. B., Sugino, K. Y., Na, F., Wang, D. H., Kabashima, J. N., and Eskalen, A. 2018. Chemical Management of Invasive Shot Hole Borer and Fusarium Dieback in California Sycamore (Platanus racemosa) in Southern California. Plant Disease. PDIS-10-7-1569-RE. Mccuiston, J. L., Hudson, L. C., Subbotin, S. A., Davis, E. L., and Warfield, C. Y. 2007. Conventional and PCR detection of Aphelenchoides fragariae in diverse ornamental host plant species. Journal of nematology 39: 343. Mcfadden, C. H., Goodloe, L., and Keeton, W. T. 1995. Biology: an exploration of life. Norton. Mendel, Z., and Freeman, S. 2015. The ‘Ambrosia Beetle’ in Israel. Agricultural Research Organization, The Volcani Center, Israel. Grom the Grove. Summer 2015. Pp: 22-23. Mendel, Z., Protasov, A., Sharon, M., Zveibil, A., Yehuda, S. B., O’Donnell, K., Rabaglia, R., Wysoki, M., and Freeman, S. 2012. An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica 40: 235-8. Miles, C., Blethen, C., Gaugler, R., Shapiro-Ilan, D., and Murray, T. 2012. Using entomopathogenic nematodes for crop insect pest control. Washington State University. A Pacific Northwest Extension Publication: 1-11. Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., Frandsen, P. B., Ware, J., Flouri, T., and Beutel, R. G. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346: 763-7. Morales-Jiménez, J., Zúñiga, G., Villa-Tanaca, L., and Hernández-Rodríguez, C. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microbial ecology 58: 879-91. Na, F., Carrillo, J. D., Mayorquin, J. S., Ndinga-Muniania, C., Stajich, J. E., Stouthamer, R., Huang, Y., Lin, Y., Chen, C., and Eskalen, A. 2018. Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallacea sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Disease, PDIS-07-17-1042-RE. Nagesh, M., Askary, T., Manohar, B., Nanjundaiah Arakalagud, S., and Rajan. 2017. Chapter 31: Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. Wallingford, UK: CAB International. Nickle, W., and Wood, G. 1964. Howardula aptini (Sharga 1932) parasitic in blueberry thrips in New Brunswick. Canadian Journal of Zoology 42: 843-6. Nickle, W. 1970. A taxonomic review of the genera of the Aphelenchoidea (Fuchs, 1937) Thorne, 1949 (Nematoda: Tylenchida). Journal of nematology 2: 375. Nunn, G. B. 1992. Nematode molecular evolution: an investigation of evolutionary patterns among nematodes based upon DNA sequences: University of Nottingham. OC Parks. 2017. Shot Hole Borer: Managing the Invasive Beetle. https://oc-parks-gis.maps.arcgis.com/apps/Cascade/index.html?appid=680fd0c9e73f4857a8477791f7ee796f. O’donnell, K., Libeskind-Hadas, R., Hulcr, J., Bateman, C., Kasson, M. T., Ploetz, R. C., Konkol, J. L., Ploetz, J. N., Carrillo, D., and Campbell, A. 2016. Invasive Asian Fusarium–Euwallacea ambrosia beetle mutualists pose a serious threat to forests, urban landscapes and the avocado industry. Phytoparasitica 44: 435-42. Paine, T., Raffa, K., and Harrington, T. 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual review of entomology 42: 179-206. Perlman, S. J., Spicer, G. S., Shoemaker, D. D., and Jaenike, J. 2003. Associations between mycophagous Drosophila and their Howardula nematode parasites: a worldwide phylogenetic shuffle. Molecular ecology 12: 237-49. Poinar, G. O. 1975. Entomogenous nematodes: A manual and host list of insect-nematode associations. Brill Archive. Poinar, G. O. 1988. Nematode parasites of Chrysomelidae. In. Biology of Chrysomelidae. Springer: 433-48. Poinar, G. O., and Van Der Laan, P. 1972. Morphology and life history of Sphaerularia bombi. Nematologica 18: 239-52. Poinar, G. O., Jr., and Himsworth, P. T. 1967. Neoaplectana parasitism of larvae of the greater wax moth, Galleria mellonella. Journal of invertebrate pathology 9: 241-6. Ramírez-Benavides, W., and Salazar-Figueroa, L. 2015. Parasitodiplogaster citrinemais an internal necrophagous species of the pollinating fig wasp Pegoscapus tonduzi. Nematology 17: 733-8. Romeyn, K., and Bouwman, L. 1983. Food selection and consumption by estuarine nematodes. Hydrobiological bulletin 17: 103-9. Rühm, W. 1956. Die Nematoden der Ipiden. Parasitologische Schriftenreihe. Jena, Germany, Veb Gustav Fischer Verlag. Sayama, K., Kosaka, H., and Makino, S. 2007. The first record of infection and sterilization by the nematode Sphaerularia in hornets (Hymenoptera, Vespidae, Vespa). Insectes sociaux 54: 53-5. Scholze, V., and Sudhaus, W. 2011. A pictorial key to current genus groups of 'Rhabditidae'. Journal of Nematode Morphology and Systematics 14: 105-12. Schroeder, L. 1988. Attraction of the bark beetle Tomicus piniperda and some other bark‐and wood‐living beetles to the host volatiles α‐pinene and ethanol. Entomologia Experimentalis et Applicata 46: 203-10. Schulte, F. 1989. The association between Rhabditis necromena Sudhaus & Schulte, 1989 (Nematoda: Rhabditidae) and native and introduced millipedes in South Australia. Nematologica 35: 82-9. Shapiro-Ilan, D. I., Han, R., and Dolinksi, C. 2012. Entomopathogenic nematode production and application technology. Journal of nematology 44: 206. Smart, G., Jr. 1995. Entomopathogenic nematodes for the biological control of insects. Journal of nematology 27: 529. Spann, T. 2016. Shot Hole Borer Research and Monitoring Programs Evolving. From the Grove. California Avocado Commission. Fall 2016: 36-38. Sudhaus, W. 2011. Phylogenetic systematisation and catalogue of paraphyletic' Rhabditidae'(Secernentea, Nematoda). Journal of Nematode Morphology and Systematics 14: 113-78. Sudhaus, W., and Fürst Von Lieven, A. 2003. A phylogenetic classification and catalogue of the Diplogastridae (Secernentea, Nematoda). Journal of Nematode Morphology and Systematics 6: 43-90. Tahseen, Q., Ahlawat, S., Asif, M., and Mustaqim, M., 2016. Description of a new species of Acrostichus Rahm 1928 (Nematoda: Diplogastridae) from India with a note on its position and relationship with the congeners. Biodiversity data journal. White, G. 1927. A method for obtaining infective nematode larvae from cultures. Science (Washington): 66. White, T. J. Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315-22. Yaman, M. 2002. Howardula phyllotretae (Tylenchida: Allantonematidae), a nematode parasite of Phyllotreta undulata and P. atra (Coleoptera: Chrysomelidae) in Turkey. Journal of Asia-Pacific Entomology 5: 233-5. Zakharenkova, N. 1996. Howardula phyllotretae (Tylenchida: Allantonematidae)-parasite of Phyllotreta flea beetles (Coleoptera: Chrysomelidae). Russian Journal of Nematology 4: 1-6. Zhang, L., Shono, T., Yamanaka, S., and Tanabe, H. 1994. Effects of Insecticides on the Entomopathogenic Nematode Steinernema carpocapsae WEISER. Applied Entomology and Zoology 29: 539-47. Zimmermann, G. 1986. The ‘Galleria bait method’ for detection of entomopathogenic fungi in soil. Journal of applied Entomology 102: 213-5. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71970 | - |
dc.description.abstract | 小蠹蟲危害眾多森林樹種及經濟作物,由於該類昆蟲於植物組織內完成大半生活史,致使防治困難,故篩選可用於生物防治之天敵,對於開發此類害蟲防治措施至關重要。本研究針對台灣小蠹蟲攜播線蟲族群進行調查,並設計小蠹蟲蟲生線蟲的特殊誘釣裝置。自2015年10月至2018年4月間,由477隻自全國各地採集而得的小蠹蟲及具蛀食孔道段木中分離得的線蟲中,共完成45個樣本鑑定。其中,13個樣本鑑定至種,25個樣本鑑定至屬,7個樣本鑑定至科,另有1個樣本無法鑑定。對線蟲樣本之核醣體基因序列的28S區塊及18S 區塊進行族群分析,發現線蟲與小蠹蟲的攜播關係並無種類專一性;一種小蠹蟲能攜帶多種線蟲,一種線蟲亦能被多種小蠹蟲攜帶。其中,以Euwallacea屬小蠹蟲攜帶線蟲的頻度最高。進行線蟲生態之分析,觀察線蟲與寄主交互關係及線蟲食性,得自段木分離的Deladenus屬及自小蠹蟲分離的Howardula屬與Sphaerularia屬線蟲與小蠹蟲具有寄生交互關係;自小蠹蟲分離的Caenorhabditis屬與Rhabditolaimus屬線蟲對小蠹蟲同時為食腐及攜播;其餘8屬與小蠹蟲為攜播關係,包含Acrostichus屬、Aphelenchoides屬、Bursaphelenchus屬、屬Diplogasteroides屬、Halicephalobus屬、Neodiplogaster屬、Rhabditidoides屬與Ruehmaphelenchus屬。本研究亦嘗試建立以小蠹蟲誘釣蟲生線蟲之技術,以飼養小圓胸小蠹(Euwallacea fornicatus)作為誘釣模式之誘餌,設計出針對地上部蟲生線蟲篩選及具有方便觀察優點的誘釣裝置。試驗期間實際測試六個樣本,並進行多次調整。本研究之線蟲族群調查資料與誘釣系統建立,提供森林生態、昆蟲與微生物間交互作用研究資料,及未來小蠹蟲防治方法研擬之參考。 | zh_TW |
dc.description.abstract | Scolytids are important pest of forest and economical important crops. The difficulty of scolytids management ties to their cryptic life cycle in host tissue. Therefore, screening for natural enemies with biological control potential is very important for management strategy developmemt. The purpose of this study were to investigate nematode population of scolytids in Taiwan and design emtomopathogenic nematode baiting system for scolytids. Nematodes isolated from 477 scolytid individuals and wood branches of their habitat were collected during October 2015 to April 2018, and fourty five nematodes have gone through the complete identification process. Among those, 13 samples could be identified to species, 25 samples could be identified to genera and 7 samples could only be identified to family level; however, one sample remains unknown. The phylogenetic analysis of the ribosomal gene 28S and 18S regions of the nematodes did not reveal specific interaction between certain scolytid and the nematodes they carry. Scolytids of same species could carry different nematodes and a given nematode species could be carried by several kinds of scolytids. The frequency of carriying neamtodes is higest for Euwallacea sp. among scolytids. Further ecological analysis of the relationships among the nematodes and scolytids through interaction and nematode feeding habits observation chaterized the relationship between the nematode and the scolytids. Deladenus spp. isolated from wood branches and the scolytids-isolated Howardula spp. and Sphaerularia spp. are with parasitism potencial; The Caenorhabditis spp. and Rhabditolaimus spp. isolated from scolytids are characterized as necronemic and phoretic. Eight genera isolated from scolytids belong to the phoresy category: Acrostichus spp., Aphelenchoides spp., Bursaphelenchus spp., Diplogasteroides spp., Halicephalobus spp., Neodiplogaster spp., Rhabditidoides spp. and Ruehmaphelenchus spp. In addition, the study attempt to construct a aboveground-nematode baiting system for scolytids-parasitic nematodes that uses reared Euwallacea fornicatus as lure. The system allows the extracted-nematodes be easily observed. Todate, 6 samples were examined to optimize the system. In sum, the outcome of this study provides valuable information of forest ecology and interaction between insect and microbe, the understanding of scolytids-related nematode population and the baiting system is useful insights for future scolytids management. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T06:17:09Z (GMT). No. of bitstreams: 1 ntu-107-R04633013-1.pdf: 11387374 bytes, checksum: aeb3926df2bdd08ae482a7d84cee4d59 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 表次索引 viii 圖次索引 ix 壹、 引言 1 一、 小蠹蟲特徵及分類地位 1 二、 小蠹蟲重要性 1 三、 小蠹蟲的防治與飼養方法 2 四、 昆蟲與線蟲交互關係 3 五、 小蠹蟲與線蟲之間關聯 4 六、 蟲生線蟲現況及應用 4 七、 研究目的 5 貳、 材料與方法 6 一、 小蠹蟲採集與線蟲分離 6 二、 線蟲分離與型態鑑定 7 三、 線蟲親緣關係分析 7 四、 小蠹蟲及線蟲人工培養 9 五、 小蠹蟲蟲生線蟲誘釣測試 11 參、 結果 12 一、 小蠹蟲採集 12 二、 線蟲分離及鑑定 12 三、 分子序列分析 16 四、 共生真菌鑑定 17 五、 小蠹蟲寄生線蟲誘釣測試 18 肆、 討論 19 伍、 參考文獻 23 陸、 圖表 33 柒、 附錄 53 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣小蠹蟲攜播線蟲族群調查 | zh_TW |
dc.title | Phoretic nematodes population of scolytids in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉瑞芬(Ruey-Fen Liou),洪挺軒(Ting-Hsuan Hung),李後鋒(Hou-Feng Li),陸聲山(Sheng-Shan Lu) | |
dc.subject.keyword | 小蠹蟲,蟲生線蟲,線蟲族群,誘釣技術, | zh_TW |
dc.subject.keyword | scolytids,entomopathogenic nematodes,nematode population,baiting technique, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU201804073 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 11.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。