請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71931完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林美峰 | |
| dc.contributor.author | Xiao-Heng Xu | en |
| dc.contributor.author | 徐小恒 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:15:27Z | - |
| dc.date.available | 2022-01-21 | |
| dc.date.copyright | 2019-01-21 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2018-08-18 | |
| dc.identifier.citation | 二宮正明。1977。アドヘルス散投與による牛と豚の受胎向上-繁殖障害に悩む酪農場と種豚場における実施例。畜產の研究 31(10):1214-1216。
牛越郁夫。1970。間脳系を経由して下垂體を刺激する物質を多量に含有する物質の製造法。日本特許公報 昭 45-12754。 王淑音、陳孟賢、廖郁銘。2015。根黴菌發酵萃取物對蛋雞之生長與產性能的影響。第十二屆兩岸三地優質雞改良生產暨發展研討會論文集,第108 -111頁。世界家禽學會臺灣分會,臺北市。 行政院農業委員會。2011。生醫產業用畜禽動物應用手冊。中華實驗動物學會,臺北市。 行政院農業委員會。2018。農業統計年報:106年畜牧類農情統計調查結果(含產值) http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx。 李舜榮。1995。鴨生產系統手冊,第1-4頁。行政院農業委員會畜產試驗所宜蘭分所,宜蘭縣。 佐藤彪。1976。乳牛の繁殖障害に対するアドヘルス散の投與試験について。家畜診療 161:25-30。 吳春利。2001。畜牧學實習(飼料分析)。合記圖書出版社,臺北市。 沈添富。1988。鴨隻營養分需要量手冊。國立台灣大學畜牧學系,臺北市。 胡怡浩、戴謙、王政騰。1999。大型番鴨之選育(2):肉用番鴨生長性能檢定。畜產研究 32(1):63-70。 胡肇嘉。2004。Rhizopus發酵產物對蛋雞產蛋性能、蛋黃中膽固醇含量及血液性狀之影響。碩士論文。國立屏東科技大學動物與畜產系,屏東縣。 馬春祥、吳和光、鄭登貴。1997。家禽之生殖,第207-251頁。國立編譯館,臺北市。 陳奕臣。2013。應用流式細胞儀評估維生素E及其類似物對公鴨精液保存之影響。碩士論文。國立宜蘭大學生物技術與動物科學系,宜蘭市。 黃振芳。1998。臺灣鴨人工授精技術之研究與發展。臺灣省畜產試驗所四十週年所慶家畜禽生理學術研討會論文集,第107-118頁。臺南縣。 黃振芳、林佳靜。2008。養鴨人家:養鴨人家的蛻變。科學發展 432:6-11。 劉瑞珍、戴謙、黃暉煌。1980。鴨人工授精之研究(2):精子數與稀釋倍數對受精率之影響。中畜會誌 9:71-77。 劉瑞珍、戴謙。1989。鴨人工授精之研究(4):貯存溫度對公正番鴨與母菜鴨間雜交受精率之影響。畜產研究 22(2):1-5。 劉昌宇。2012a。飼料添加好利得(Rhizopus extract)對離乳仔豬生長及作用機制探討。(未發表報告) 劉昌宇。2012b。飼料添加好利得(Rhizopus extract)對公豬精液性狀影響試驗。(未發表報告) 劉秀洲。2017。二元與三元的對話—土番鴨生產。科學發展 533:24-27。 瀬戸勝男、菊地明江、今田育秀、三浦幸子、小嶋ひさ夫、川上正澄。1974。下垂體破壊ウサギの卵巣ステロイド生成に対する性腺刺激ホルモンおよびRhizopus菌體成分の影響。醫學と生物學 89(5): 319-322。 藍鈺登、陳雪羚、林美峰。2015。根黴菌萃取物於土雞飼糧添加之應用。第十二屆兩岸三地優質雞改良生產暨發展研討會論文集,第95-98頁。世界家禽學會臺灣分會,臺北市。 藍鈺登。2017。根黴菌發酵萃取物對公日本鵪鶉性徵表現之影響。碩士論文。國立臺灣大學動物科學技術學系,臺北市。 藍鈺登、林美峰。2017。根黴菌發酵萃取物對公日本鵪鶉性徵表現之影響。中畜會誌 46(4):343-360。 Agarwal, A., E. Ozturk, and K. R. Loughlin. 1992. Comparison of semen analysis between the two Hamilton-Thorn semen analysers. Andrologia 24(6):327-329. Aire, T. A. 2003. Ultrastructural study of spermatogenesis in the turkey, Meleagris gallopavo. Br. Poult. Sci. 44(5):674-682. Amann, R. P., and D. Waberski. 2014. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81(1):5-17. e1-3. Ashizawa, K., and G. J. Wishart. 1987. Resolution of the sperm motility-stimulating principle of fowl seminal plasma into Ca2+ and an unidentified low molecular weight factor. J. Reprod. Fert. 81(2):495-499. Atanasov, V., V. Gerzilov, and E. Dyshlianova. 2007. Comparison of biochemical parameters of Muscovy drake semen diluted and stored at 4 degrees C in three buffers. Anim. Reprod. Sci. 100(3-4):329-337. Bakst, M. R. 1980. Fertilizing capacity and morphology of fowl and turkey spermatozoa in hypotonic extender. J. Reprod. Fert. 60(1):121-127. Bakst, M. R., and H. C. Cecil. 1997. Techniques for semen evaluation, semen storage, and fertility determination. 3. Sperm viability. I. Nigrosin/eosin stain for determine live/dead and abnormal sperm count. pp. 29-34. The Poultry Science Association, Inc., Savoy, Illinois. Bhandari, R. K., I. Ushikoshi, H. Fukuoka, N. Koide, K. Yamauchi, and H. Ueda. 2002. Effects of Rhizopus extract administration on somatic growth and sexual maturation in lacustrine sockeye salmon Oncorhynchus nerka. Fish. Sci. 68(4):776-782. Birkhead, T. R., J. G. Martínez, T. Burke, and D. P. Froman. 1999. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. Lond. B. 266(1430):1759-1764. Blesbois, E. 2012. Biological features of the avian male gamete and their application to biotechnology of conservation. J. Poult. Sci. 49(3):141-149. Blesbois, E., I. Grasseau, F. Seigneurin, S. Mignon-Grasteau, M. Saint Jalme, and M. M. Mialon-Richard. 2008. Predictors of success of semen cryopreservation in chickens. Theriogenology 69(2):252-261. Bootwalla, S. M., and R. D. Miles. 1992. Development of diluents for domestic fowl semen. World's Poultry Sci. J. 48(2):121-128. Brata-Arbai, A. M. 1994. Normolipidemic effects of tempeh-A5 and tempeh on lipid profiles of dyslipidemic patients. PhD Diss. Airlangga University, Surabaya, Indonesia. Brillard, J. P., and G. R. McDaniel. 1985. The reliability and efficiency of various methods for estimating spermatozoa concentration. Poult. Sci. 64(1):155-158. Briskie, J. V., and R. Montgomerie. 1993. Patterns of sperm storage in relation to sperm competition in passerine birds. The Condor 95(2):442-454. Chalah, T., and J. P. Brillard. 1998. Comparison of assessment of fowl sperm viability by eosin-nigrosin and dual fluorescence (SYBR-14/PI). Theriogenology 50(3):487-493. Chandra, A. K., P. Sengupta, H. Goswami, and M. Sarkar. 2012. Excessive dietary calcium in the disruption of structural and functional status of adult male reproductive system in rat with possible mechanism. Mol. Cell. Biochem. 364(1-2):181-191. Chen, Y. C., H. C. Liu, L. Y. Wei, J. F. Huang, C. C. Lin, E. Blesbois, and M. C. Chen. 2016. Sperm quality parameters and reproductive efficiency in Muscovy duck (Cairina moschata). J. Poult. Sci. 53(3):223-232. Cheng, K. C., J. Y. Wu, J. T. Lin, and W. H. Liu. 2013. Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp. Eur. Food Res. Technol. 236(6):1107-1113. Cheng, Y. S., R. Rouvier, J. P. Poivey, J. J. Tai, C. Tai, and S. C. Huang. 2002. Selection responses for the number of fertile eggs of the Brown Tsaiya duck (Anas platyrhynchos) after a single artificial insemination with pooled Muscovy (Cairina moschata) semen. Genet. Sel. Evol. 34(5):597-611. Comhaire, F. H., Y. El Garem, A. Mahmoud, F. Eertmans, and F. Schoonjans. 2005. Combined conventional/antioxidant 'Astaxanthin' treatment for male infertility: a double blind, randomized trial. Asian J. Androl. 7(3):257-262. Curhan, G. C., W. C. Willett, E. B. Rimm, and M. J. Stampfer. 1993. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 328(12):833-838. Denke, M. A., M. M. Fox, and M. C. Schulte. 1993. Short-term dietary calcium fortification increases fecal saturated fat content and reduces serum lipids in men. J. Nutr. 123(6):1047-1053. Ditscheid, B., S. Keller, and G. Jahreis. 2005. Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J. Nutr. 135(7):1678-1682. Donoghue, A. M., T. S. Sonstegard, L. M. King, E. J. Smith, and D. W. Burt. 1999. Turkey sperm mobility influences paternity in the context of competitive fertilization. Biol. Reprod. 61(2):422-427. Eltohamy, M. M., and H. Takahara. 1985. Effects of dietary calcium levels on testicular function in the White Leghorn cocks. J. Fac. Agr. Kyushu. Univ. 30(2/3):125-134. Evenson, D. P., K. L. Larson, and L. K. Jost. 2002. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 23(1):25-43. Fontana, E. A., W. D. Weaver Jr, and H. P. Van Krey. 1990. Effects of various feeding regimens on reproduction in broiler-breeder males. Poult. Sci. 69(2):209-216. Froman, D. P. 2007. Sperm motility in birds: insights from fowl sperm. Soc. Reprod. Fertil. Suppl. 65:293-308. Froman, D. P., J. C. Wardell, and A. J. Feltmann. 2006. Sperm mobility: deduction of a model explaining phenotypic variation in roosters (Gallus domesticus). Biol. Reprod. 74(3):487-491. Froman, D. P., T. Pizzari, A. J. Feltmann, H. Castillo-Juarez, and T. R. Birkhead. 2002. Sperm mobility: mechanisms of fertilizing efficiency, genetic variation and phenotypic relationship with male status in the domestic fowl, Gallus gallus domesticus. Proc. R. Soc. Lond. B. 269(1491):607-612. Gerzilov, V., A. Bochukov, G. Penchev, and P. Petrov. 2016. Testicular development in the Muscovy duck (Cairina moschata). Bulg. J. Vet. Med. 19(1):8-18. Ghaniei, A., M. Eslami, and S. S. BabaeiMarzango. 2018. Determination of calcium, magnesium, phosphorus, iron, and copper contents in rooster seminal plasma and their effects on semen quality. Comp. Clin. Pathol. 27(2):427-431. Guo, X., K. Huang, and J. Tang. 2005. Clinicopathology of gout in growing layers induced by high calcium and high protein diets. Br. Poult. Sci. 46(5):641-646. Gvaryahu, G., B. Robinzon, A. Meltzer, and N. Snapir. 1984. Semen characteristics of the Muscovy drake (Cairina moschata) as affected by seasonal variation. Reprod. Nutr. Dévelop. 24(4):343-350. Hansson, M. J., R. Månsson, S. Morota, H. Uchino, T. Kallur, T. Sumi, N. Ishii, M. Shimazu, M. F. Keep, A. Jegorov, and E. Elmér. 2008. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radical Biol. Med. 45(3):284-294. Heidary, M., S. Vahhabi, J. Reza Nejadi, B. Delfan, M. Birjandi, H. Kaviani, and S. Givrad. 2008. Effect of saffron on semen parameters of infertile men. Urol. J. 5(4):255-259. Heth, D. A., and W. G. Hoekstra. 1965. Zinc-65 absorption and turnover in rats: I. A procedure to determine zinc-65 absorption and the antagonistic effect of calcium in a practical diet. J. Nutr. 85(4):367-374. Howarth, B. Jr. 1983. Fertilizing ability of cock spermatozoa from the testis epididymis and vas deferens following intramagnal insemination. Biol. Reprod. 28(3):586-590. Jacquet, J. M. 1997. Photorefractory period of the Muscovy duck (Cairina moschata): endocrine and neuroendocrine responses to day length after a full reproductive cycle. Br. Poult. Sci. 38(2):209-216. Jacquet, J. M., and B. Sauveur. 1995. Photoperiodic control of sexual maturation in Muscovy drakes. Domest. Anim. Endocrinol. 12(2):189-195. Jana, K., and P. K. Samanta. 2006. Evaluation of single intratesticular injection of calcium chloride for nonsurgical sterilization in adult albino rats. Contraception 73(3):289-300. Jones, R., and T. D. Glover. 1975. Interrelationships between spermatozoa, the epididymis and epididymal plasma. Page 367-384 in The Biology of the Male Gamete. Duckett, J. G., and P. A. Racey, eds. Academic Press, London. Kanyinji, F., and T. Maeda. 2010. Additional dietary calcium fed to Barred Plymouth Rock roosters reduces blood cholesterol, elevates seminal calcium, and enhances sperm motility, thermo-tolerance and cryosurvivability. Anim. Reprod. Sci. 120(1-4):158-165. Kitcherside, M. A., E. F. Glen, and A. J. F. Webster. 2000. FibreCap: an improved method for the rapid analysis of fiber in feeding stuffs. Anim. Feed Sci. Technol. 86(1-2):125-132. Lemoine, M., S. Mignon-Grasteau, I. Grasseau, M. Magistrini and E. Blesbois. 2011. Ability of chicken spermatozoa to undergo acrosome reaction after liquid storage or cryopreservation. Theriogenology 75(1):122-130. Lukaszewicz, E., A. Jerysz, A. Partyka, and A. Siudzińska. 2008. Efficacy of evaluation of rooster sperm morphology using different staining methods. Res. Vet. Sci. 85(3):583-588. Maeda, T., T. Terada, and Y. Tsutsumi. 1984. Morphological observations on frozen and thawed Muscovy spermatozoa. Br. Poult. Sci. 25(3):409-413. Marcon, L., and G. Boissonneault. 2004. Transient DNA strand breaks during mouse and human spermiogenesis: new insights in stage specificity and link to chromatin remodeling. Biol. Reprod. 70(4):910-918. Matsuura, K., H. W. Huang, M. C. Chen, Y. Chen, and C. M. Cheng. 2017. Relationship between porcine sperm motility and sperm enzymatic activity using paper-based devices. Sci. Rep. 7:46213. doi: 10.1038/srep46213 Mezquita, C., and C. S. Teng. 1977. Studies on sex-organ development. Changes in nuclear and chromatin composition and genomic activity during spermatogenesis in the maturing rooster testis. Biochem. J. 164(1):99-111. Munro, S. S. 1938. Functional changes in fowl sperm during their passage through the excurrent ducts of the male. J. Exp. Zool. 79(1):71-92. Namntu, M. 2016. The effect of crude protein and calcium intake on fertility of male broiler breeders. Master Diss. Univ. of KwaZulu-Natal, Pietermaritzburg. National Research Council. 1994. Nutritional requirements of poultry: Ninth revised edition. National Academy Press, Washington, DC. Nordin, B. E. C. 1960. Osteomalacia, osteoporosis and calcium deficiency. Clin. Orthop. Relat. Res. 17:235-258. Nout, M. J. R., and J. L. Kiers. 2005. Tempe fermentation, innovation and functionality: update into the third millenium. J. Appl. Microbiol. 98(4):789-805. Okamura, F., and H. Nishiyama. 1978. The passage of spermatozoa through the vitelline membrane in the domestic fowl, Gallus gallus. Cell Tissue Res. 188(3):497-508. Olsen, M. W., and B. H. Neher. 1948. The site of fertilization in the domestic fowl. J. Exp. Zool. 109(3):355-366. Oumaima, A., A. Tesnim, H. Zohra, S. Amira, Z. Ines, C. Sana, G. Intissar, E. Lobna, J. Ali, and M. Meriem. 2018. Investigation on the origin of sperm morphological defects: oxidative attacks, chromatin immaturity, and DNA fragmentation. Environ. Sci. Pollut. Res. Int. 25(14), 13775-13786. Pollock, C. G., and S. E. Orosz. 2002. Avian reproductive anatomy, physiology and endocrinology. Vet. Clin. North. Am. Exot. Anim. Pract. 5(3):441-474. Prien, S. D., C. D. Lox, R. H. Messer, and F. D. DeLeon. 1990. Seminal concentrations of total and ionized calcium from men with normal and decreased motility. Fertil. Steril. 54(1):171-172. Rahman, M. S., W. S. Kwon, and M. G. Pang. 2014. Calcium influx and male fertility in the context of the sperm proteome: an update. BioMed Res. Int. 2014. http://dx.doi.org/10.1155/2014/841615 Rao, A. V., and C. Shaha. 2000. Role of glutathione S-transferases in oxidative stress–induced male germ cell apoptosis. Free Radical Biol. Med. 29(10):1015-1027. Robertson, L., H. L. Brown, H. J. Staines, and G. J. Wishart. 1997. Characterization and application of an avian in vitro spermatozoa–egg interaction assay using the inner perivitelline layer from laid chicken eggs. J. Reprod. Fert. 110(2):205-211. Saeki, Y. 1960. Crooked-necked spermatozoa in relation to low fertility in the artificial insemination of fowl. Poult. Sci. 39(6):1354-1361. Saeki, Y., and K. I. Brown. 1962. Effect of abnormal spermatozoa on fertility and hatchability in the turkey. Poult. Sci. 41(4):1096-1100. Sampson, F. R., and D. C. Warren. 1939. Density of suspension and morphology of sperm in relation to fertility in the fowl. Poult. Sci. 18(4):301-307. Santiago-Moreno, J., C. Castaño, A. Toledano-Díaz, M. C. Esteso, A. López-Sebastián, S. G. Dávila, and J. L. Campo. 2014. Role of sperm velocity variables associated with poultry breed in 'last male precedence'. Reprod. Domest. Anim. 49(1):134-139. SAS. 2016. SAS/STAT User’s Guide, Version 9.4. SAS Institute, Inc. Cary, N.C. Seigneurin, F., and E. Blesbois. 1995. Effects of the freezing rate on viability and fertility of frozen-thawed fowl spermatozoa. Theriogenology 43(8):1351-1358. Shafey, T. M., and M. W. McDonald. 1991. The effects of dietary concentrations of minerals, source of protein, amino acids and antibiotics on the growth of and digestibility of amino acids by broiler chickens. Br. Poult. Sci. 32(3):535-544. Shane, S. M., R. J. Young, and L. Krook. 1969. Renal and parathyroid changes produced by high calcium intake in growing pullets. Avian Dis. 13(3):558-567. Sorensen, M. B., I. A. Bergdahl, N. H. Hjøllund, J. P. Bonde, M. Stoltenberg, and E. Ernst. 1999. Zinc, magnesium and calcium in human seminal fluid: relations to other semen parameters and fertility. Mol. Hum. Reprod. 5(4):331-337. Stanislavov, R., V. Nikolova, and P. Rohdewald. 2009. Improvement of seminal parameters with Prelox®: a randomized, double‐blind, placebo‐controlled, cross‐over trial. Phytother. Res. 23(3):297-302. Suzuki, T., H. Fukuoka, S. Ushikoshi, R. Sato, H. Morita, and T. Takizawa. 2015. Protective effect of aqueous extracts from Rhizopus oryzae on liver injury induced by carbon tetrachloride in rats. Anim. Sci. J. 86(5):532-540. Tai Liu, J. J. and C. Tai. 1991. Mule duck production in Taiwan. I. Artificial insemination of ducks. Food and Fertilizer Technology Center, extension bulletin No. 328, 1-6. Thurston, R. J., and N. Korn. 2000. Spermatogenesis in commercial poultry species: anatomy and control. Poult. Sci. 79(11):1650-1668. Tsutsui, T., E. Kawakami, I. Murao, and A. Ogasa. 1989. Transport of spermatozoa in the reproductive tract of the bitch: observations through uterine fistula. Jpn. J. Vet. Sci. 51(3):560-565. Wang, L. Q., H. X. Yu, S. H. Ma, C. F. Zhag, C. l. Hao, X. C. Zhu, Z. X. Sun, L. H. Li, and Y. Lu. 2004. The measurement of Tempe safety research on Rhizopus fermenting soyfood. J. North. Agr. U. 35(6):664-666. Wideman, R. F. Jr., J. A. Closser, W. B. Roush, and B. S. Cowen. 1985. Urolithiasis in pullets and laying hens: role of dietary calcium and phosphorus. Poult. Sci. 64(12):2300-2307. Wilcox, F. H. 1958. The effect of dilution and concentration of chicken semen on fertility. Poult. Sci. 37(6):1357-1362. Wilson, H. R., J. N. Persons, L. O. Rowland Jr, and R. H. Harms. 1969. Reproduction in White Leghorn males fed various levels of dietary calcium. Poult. Sci. 48(3):798-801. Wilson, J. L., G. R. McDaniel, and C. D. Sutton. 1987. Dietary protein levels for broiler breeder males. Poult. Sci. 66(2):237-242. Wishart, G. J., and K. Ashizawa. 1987. Regulation of the motility of fowl spermatozoa by calcium and cAMP. J. Reprod. Fert. 80(2):607-611. Wishart, G. J., and A. J. Horrocks. 2000. Fertilization in Birds. Page 193-222 in Fertilization in Protozoa and Metazoan Animals: Cellular and Molecular Aspects. Tarín, J. J., and A. Cano, eds. Springer Berlin Heidelberg Press, New York. Yamamoto, Y., K. Shimamoto, N. Sofikitis, and I. Miyagawa. 1999. Effects of hypercholesterolaemia on Leydig and Sertoli cell secretory function and the overall sperm fertilizing capacity in the rabbit. Hum. Reprod. 14(6):1516-1521. Zerihun, M. M. 2007. Physiological studies on somatic growth and sexual maturation in salmonids. PhD Diss. Hokkaido University, Sapporo-shi, Hokkaido. Zhang, X., W. D. Berry, G. R. McDaniel, D. A. Roland, P. Liu, C. Calvert, and R. Wilhite. 1999. Body weight and semen production of broiler breeder males as influenced by crude protein levels and feeding regimens during rearing. Poult. Sci. 78(2):190-196. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71931 | - |
| dc.description.abstract | 本研究目的旨在探討飼糧中鈣含量或根黴菌發酵萃取物(Rhizopus fermentation extract, RE)添加對公番鴨精液品質的影響。
試驗使用28週齡公番鴨27隻,隨機分配至三處理組,分別為高鈣組(3% Ca)、對照組(1% Ca)及根黴菌發酵萃取物添加組(1% Ca + 0.2% RE,簡稱RE添加組),每組9隻。試驗分為兩部分探討,第一部分:高鈣組與對照組比較,探討飼糧中的高鈣濃度(高鈣組)對番鴨精液品質的影響。第二部分:對照組與RE添加組比較,探討根黴菌發酵萃取物添加(RE添加組)對公番鴨精液品質的影響。試驗開始於30週齡,直至52週齡結束,為期22週。試驗期間每週採精兩次並測量參試鴨隻之精液量、精子濃度、活力及總精子數等。每4週稱重一次,並採集血液及精液進行血液生化值、精子形態及存活率等檢測。於38週齡時採集精液,將各處理組9隻鴨子採集之精液混合成混合精液後,對36隻26週齡母改鴨進行人工授精,三組使用108隻母改鴨。於46和49週齡時,同樣使用混合精液對12隻36週齡母改鴨進行人工授精,三組使用36隻母改鴨。收集授精後隔天起七天之種蛋入孵,計算其受精率。 結果顯示,飼糧鈣含量不影響體增重、精液量、精子存活率及受精率。高鈣組精子濃度於試驗後期有較對照組為低之趨勢,且在47週齡時有顯著差異(P<0.05)。高鈣組之總精子數於39週齡後皆低於對照組,惟未達到顯著差異。高鈣組之精子直線速度(straight line velocity, VSL)、精子曲線速度(curvilinear velocity, VCL)及精子平均路徑速度(average path velocity, VAP)顯著低於對照組,且高鈣組有較高的精子折頸率,但其畸形率與對照組間無顯著差異。 對照組與RE添加組在體增重、精子濃度、精子活力、畸形率、存活率及受精率上無顯著差異,RE添加組與對照組之精液量分別維持在1.4 mL以上與1.2-1.4 mL。除RE添加組於47週齡精液量及於36週齡之精液總精子數顯著高於對照組外,其它試驗期間兩組間之精液量及精液總精子數皆無顯著差異。 綜而論之,本試驗結果顯示高鈣飼糧(3%)對精子活力有不利影響,而根黴菌發酵萃取物添加並不影響精子活力、受精率、存活率以及畸形率,但可提高番鴨的精液量。因此,降低飼料鈣含量或根黴菌發酵萃取物添加之處理,可提高公番鴨之精子活力或精液量,有利於生產效率的提升。 | zh_TW |
| dc.description.abstract | The objective of this study was to understand the effects of dietary calcium level or Rhizopus fermentation extract (RE) on semen quality of the Muscovy duck.
A total of number 27 28-week old male Muscovy ducks were used in this study and allocated randomly into three groups for different treatments: 3% Ca, 1% Ca and 1% Ca + 0.2% RE. The experiment was divided into two parts. The first part was to investigate the effect of calcium level on the semen quality of Muscovy duck and the second part was to understand the effect of Rhizopus fermentation extract on the semen quality of Muscovy duck. From 30 weeks of age, semen samples were collected twice every week until 52 weeks of age and semen volume, concentration, motility, and total number of spermatozoa were measured. During the experiment, ducks were weighed every four weeks. The blood and semen were also sampled for analysis of blood biochemistry value and sperm morphology. Semen was collected at 38, 46 and 49 weeks of age, and the 108 or 36 female Kaiya ducks at 26 or 36 weeks of age were randomly allocated into three groups for artificial insemination, and the eggs were collected for fertilization observation. The results indicate that there was no significant difference in body weight gain, semen volume, sperm viability and fertilization rate between the 3% Ca group and the 1% Ca group. The sperm concentration of the 1% Ca group was higher than that of the 3% Ca group at late stage of the study and there was significantly different at 47 weeks of age (P<0.05), but there was no significant difference for the overall sperm concentration. The total number of spermatozoa was higher in the 1% Ca group after 39 weeks of age, but there was no significantly different from 3% Ca group. In sperm motility, the 1% Ca group was significantly higher in straight line velocity (VSL), curvilinear velocity (VCL), and average path velocity (VAP) than the 3% Ca group. In sperm morphology, there was no significant difference in sperm viability, but the high calcium group has a higher sperm necking rate. However, the malformation rate was not significantly different between the two groups. There was no significant difference in body weight gain, sperm concentration, motility, morphology, viability and fertilization rate between the 1% Ca group and the 1% Ca + 0.2% RE group. In semen volume, 1% Ca + 0.2% RE group was maintained above 1.4 mL, while the 1% Ca group was maintained at 1.2-1.4 mL. However, except for the semen volume of 1% Ca + 0.2% RE group, it was significantly high than that of the 1% Ca group of 47 weeks of age. However, there was no significant difference in other weeks of age between these two groups. In total number of spermatozoa, there was no significant difference between the two groups except at 36 weeks of age the 1% Ca + 0.2% RE group was significantly higher than 1% Ca group. In conclusion, the dietary calcium level has an adverse effect on sperm motility. The addition of Rhizopus fermentation extract to the dietary does not affect sperm motility, viability, morphology and fertilization rate, but can increase the semen volume in Muscovy duck. Results of this study show that reducing the calcium level in the diet or the addition of the Rhizopus fermentation extract can improve the semen characteristics of the Muscovy duck, which is conducive to the improvement of production efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:15:27Z (GMT). No. of bitstreams: 1 ntu-108-R05626026-1.pdf: 1455271 bytes, checksum: 1cc293023b9a25c58b0ca45282202ca1 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II ABSTRACT IV 目錄 VI 圖目錄 IX 表目錄 X 壹、緒言 1 貳、文獻檢討 2 一、養鴨產業概況 2 二、土番鴨生產 3 (一) 番鴨 3 (二) 北京鴨 3 (三) 菜鴨 4 (四) 改鴨 4 三、番鴨生理特性 5 (一) 繁殖生理 5 (二) 睪丸發育 6 (三) 精子發生 7 (四) 精子成熟與受精 9 四、精液品質評估 10 (一) 物理性狀 10 (二) 精子濃度 10 (三) 精子活力 11 (四) 精子存活率 12 (五) 精子形態 13 五、飼糧鈣含量及根黴菌發酵萃取物對動物的影響 14 (一) 鈣含量對動物的影響 14 (二) 鈣對動物性腺的影響 15 (三) 鈣對動物精液品質的影響 16 (四) 根黴菌發酵萃取物 19 (五) 根黴菌發酵萃取物之促進生長及改善生產性能 20 (六) 根黴菌發酵萃取物之促性腺作用 20 叄、材料與方法 24 一、試驗動物及飼養管理 24 二、試驗處理 24 (一) 高鈣飼糧對公番鴨精液品質的影響 24 (二) 根黴菌發酵萃取物對公番鴨精液品質的影響 26 三、測定項目及分析方法 27 (一) 飼料營養成分分析 27 (二) 精液採集 28 (三) 精液品質檢測 29 (四) 受精率 31 (五) 血液生化值 31 (六) 統計分析 32 肆、結果 33 一、高鈣飼糧對公番鴨生長與生殖的影響 33 (一) 體重變化 33 (二) 血液生化值 33 (三) 精液品質 35 二、 飼糧添加根黴菌發酵萃取物對公番鴨生長與生殖的影響 41 (一) 體重變化 41 (二) 血液生化值 41 (三) 精液品質 43 伍、討論 49 一、飼糧中鈣含量對番鴨生長與生殖的影響 49 (一) 體重變化 49 (二) 血液生化值 49 (三) 精液品質 50 二、根黴菌發酵萃取物對番鴨生長與生殖的影響 52 (一) 體重變化 52 (二) 血液生化值 52 (三) 精液品質 53 陸、結論 55 柒、參考文獻 56 附錄 67 作者簡歷 70 | |
| dc.language.iso | zh-TW | |
| dc.subject | 高鈣 | zh_TW |
| dc.subject | 根黴菌發酵萃取物 | zh_TW |
| dc.subject | 公番鴨 | zh_TW |
| dc.subject | 精液品質 | zh_TW |
| dc.subject | 精子活力 | zh_TW |
| dc.subject | high calcium | en |
| dc.subject | Rhizopus fermented extract | en |
| dc.subject | Muscovy duck | en |
| dc.subject | semen quality | en |
| dc.subject | sperm motility | en |
| dc.title | 飼糧鈣含量或添加根黴菌發酵萃取物對公番鴨精液品質之影響 | zh_TW |
| dc.title | Effects of Dietary Calcium Level or Rhizopus Fermentation Extract on Semen Quality of Muscovy Duck | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王翰聰,魏恒巍,劉秀洲 | |
| dc.subject.keyword | 高鈣,根黴菌發酵萃取物,公番鴨,精液品質,精子活力, | zh_TW |
| dc.subject.keyword | high calcium,Rhizopus fermented extract,Muscovy duck,semen quality,sperm motility, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201803981 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
