Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71910
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡素宜(Su-Yi Tsai)
dc.contributor.authorChia-Wei Changen
dc.contributor.author張家維zh_TW
dc.date.accessioned2021-06-17T06:14:36Z-
dc.date.available2019-09-25
dc.date.copyright2018-09-25
dc.date.issued2018
dc.date.submitted2018-09-17
dc.identifier.citation1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS and Jones JM. Embryonic stem cell lines derived from human blastocysts. Science (New York, NY). 1998;282:1145-7.
2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861-72.
3. Chambers SM, Qi Y, Mica Y, Lee G, Zhang X-J, Niu L, Bilsland J, Cao L, Stevens E, Whiting P, Shi S-H and Studer L. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nature Biotechnology. 2012;30:715.
4. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ and Palecek SP. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nature protocols. 2013;8:162-75.
5. Mathapati S, Siller R, Impellizzeri AA, Lycke M, Vegheim K, Almaas R and Sullivan GJ. Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells. Current protocols in stem cell biology. 2016;38:1g.6.1-1g.6.18.
6. Solaro RJ and de Tombe PP. Review focus series: sarcomeric proteins as key elements in integrated control of cardiac function. Cardiovascular research. 2008;77:616-8.
7. Laing NG and Nowak KJ. When contractile proteins go bad: the sarcomere and skeletal muscle disease. BioEssays : news and reviews in molecular, cellular and developmental biology. 2005;27:809-22.
8. Dabiri GA, Turnacioglu KK, Sanger JM and Sanger JW. Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proceedings of the National Academy of Sciences. 1997;94:9493.
9. Rhee D, Sanger Jean M and Sanger Joseph W. The premyofibril: Evidence for its role in myofibrillogenesis. Cell Motility. 1994;28:1-24.
10. Gehmlich K, Pinotsis N, Hayess K, van der Ven PF, Milting H, El Banayosy A, Korfer R, Wilmanns M, Ehler E and Furst DO. Paxillin and ponsin interact in nascent costameres of muscle cells. Journal of molecular biology. 2007;369:665-82.
11. Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg H-P, McKenna W, Seidman CE and Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation. Cell. 1990;62:999-1006.
12. Laing NG. Inherited disorders of contractile proteins in skeletal and cardiac muscle. Current opinion in neurology. 1995;8:391-6.
13. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. Jama. 2002;287:1308-20.
14. Sutherland LC, Rintala-Maki ND, White RD and Morin CD. RNA binding motif (RBM) proteins: a novel family of apoptosis modulators? Journal of cellular biochemistry. 2005;94:5-24.
15. Maris C, Dominguez C and Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. The FEBS journal. 2005;272:2118-31.
16. Bandziulis RJ, Swanson MS and Dreyfuss G. RNA-binding proteins as developmental regulators. Genes & development. 1989;3:431-7.
17. Kenan DJ, Query CC and Keene JD. RNA recognition: towards identifying determinants of specificity. Trends in biochemical sciences. 1991;16:214-20.
18. Xu XQ, Soo SY, Sun W and Zweigerdt R. Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem cells (Dayton, Ohio). 2009;27:2163-74.
19. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, Maatz H, Schulz H, Li S, Parrish AM, Dauksaite V, Vakeel P, Klaassen S, Gerull B, Thierfelder L, Regitz-Zagrosek V, Hacker TA, Saupe KW, Dec GW, Ellinor PT, MacRae CA, Spallek B, Fischer R, Perrot A, Ozcelik C, Saar K, Hubner N and Gotthardt M. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nature medicine. 2012;18:766-73.
20. Gerber WV, Yatskievych TA, Antin PB, Correia KM, Conlon RA and Krieg PA. The RNA-binding protein gene, hermes, is expressed at high levels in the developing heart. Mech Dev. 1999;80:77-86.
21. Li D, Morales A, Gonzalez-Quintana J, Norton N, Siegfried JD, Hofmeyer M and Hershberger RE. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clinical and translational science. 2010;3:90-7.
22. Hotte GJ, Linam-Lennon N, Reynolds JV and Maher SG. Radiation sensitivity of esophageal adenocarcinoma: the contribution of the RNA-binding protein RNPC1 and p21-mediated cell cycle arrest to radioresistance. Radiation research. 2012;177:272-9.
23. Carvalho B, Postma C, Mongera S, Hopmans E, Diskin S, van de Wiel MA, van Criekinge W, Thas O, Matthai A, Cuesta MA, Terhaar Sive Droste JS, Craanen M, Schrock E, Ylstra B and Meijer GA. Multiple putative oncogenes at the chromosome 20q amplicon contribute to colorectal adenoma to carcinoma progression. Gut. 2009;58:79-89.
24. Van den Hoogenhof MMG, van der Made I, Beqqali A, de Groot NE, Damanafshan A, van Oort RJ, Pinto YM and Creemers EE. The RNA-binding protein Rbm38 is dispensable during pressure overload-induced cardiac remodeling in mice. PloS one. 2017;12:e0184093.
25. Shu L, Yan W and Chen X. RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes & development. 2006;20:2961-72.
26. Jiang Y, Zhang M, Qian Y, Xu E, Zhang J and Chen X. Rbm24, an RNA-binding protein and a target of p53, regulates p21 expression via mRNA stability. The Journal of biological chemistry. 2014;289:3164-75.
27. Fetka I, Radeghieri A and Bouwmeester T. Expression of the RNA recognition motif-containing protein SEB-4 during Xenopus embryonic development. Mechanisms of Development. 2000;94:283-286.
28. Maragh S, Miller RA, Bessling SL, McGaughey DM, Wessels MW, de Graaf B, Stone EA, Bertoli-Avella AM, Gearhart JD, Fisher S and McCallion AS. Identification of RNA binding motif proteins essential for cardiovascular development. BMC Developmental Biology. 2011;11:62.
29. Poon KL, Tan KT, Wei YY, Ng CP, Colman A, Korzh V and Xu XQ. RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility. Cardiovascular research. 2012;94:418-27.
30. Yang J, Hung LH, Licht T, Kostin S, Looso M, Khrameeva E, Bindereif A, Schneider A and Braun T. RBM24 is a major regulator of muscle-specific alternative splicing. Dev Cell. 2014;31:87-99.
31. Zhang T, Lin Y, Liu J, Zhang ZG, Fu W, Guo LY, Pan L, Kong X, Zhang MK, Lu YH, Huang ZR, Xie Q, Li WH and Xu XQ. Rbm24 Regulates Alternative Splicing Switch in Embryonic Stem Cell Cardiac Lineage Differentiation. Stem cells (Dayton, Ohio). 2016;34:1776-89.
32. Anzi S, Stolovich-Rain M, Klochendler A, Fridlich O, Helman A, Paz-Sonnenfeld A, Avni-Magen N, Kaufman E, Ginzberg MB, Snider D, Ray S, Brecht M, Holmes MM, Meir K, Avivi A, Shams I, Berkowitz A, Shapiro AMJ, Glaser B, Ben-Sasson S, Kafri R and Dor Y. Postnatal Exocrine Pancreas Growth by Cellular Hypertrophy Correlates with a Shorter Lifespan in Mammals. Developmental cell. 2018;45:726-737.e3.
33. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S, Sallam K, Knowles JW, Wang PJ, Nguyen PK, Bers DM, Robbins RC and Wu JC. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013;127:1677-91.
34. Hans F and Dimitrov S. Histone H3 phosphorylation and cell division. Oncogene. 2001;20:3021.
35. Ichida M, Hakamata Y, Hayakawa M, Ueno E, Ikeda U, Shimada K, Hamamoto T, Kagawa Y and Endo H. Differential regulation of exonic regulatory elements for muscle-specific alternative splicing during myogenesis and cardiogenesis. The Journal of biological chemistry. 2000;275:15992-6001.
36. Kong SW, Hu YW, Ho JW, Ikeda S, Polster S, John R, Hall JL, Bisping E, Pieske B, dos Remedios CG and Pu WT. Heart failure-associated changes in RNA splicing of sarcomere genes. Circulation Cardiovascular genetics. 2010;3:138-46.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71910-
dc.description.abstract心臟肌節基因的缺陷通常造成嚴重的心肌疾病,而目前大多數治療心臟衰竭的方法無法根治肌肉缺陷的問題。RBM24被視作為調節心臟發育及肌節發育過程中,調控mRNA拼接的重要角色。然而,RBM24中具有主要功能的區域及其在人類心肌細胞發育過程中詳細的功能仍未被證實。本研究在人類胚胎幹細胞中利用CRISPR/Cas9系統分別剔除RBM24基因之兩個不同區域,以測試RBM24之RRM 結構域的功能。在此結果中,兩種剔除細胞株之心肌細胞雖然可以正常跳動,但剔除RRM結構域之細胞株之心肌細胞呈現肌節構造排列不規則及不正常之粒線體表現型。對比之下,於Exon2剔除細胞株在肌節構造、心肌細胞大小及粒線體形態上均呈正常表現型。整體而言,本研究不只初步證明了RBM24之RRM結構域在人類胚胎幹細胞衍生之心肌肌節生成中扮演必要角色,並更進一步發現RBM24蛋白可能影響心肌細胞中粒線體之功能。未來我將利用RNA sequencing的方法,去更進一步了解RRM結構域之功能在心肌肌節生成的分子機制。zh_TW
dc.description.abstractThe abnormal expression of cardiac sarcomere genes usually results in cardiomyopathy. However, current treatments for heart failure do not address the root problem involving cardiac muscle deficiencies. RNA-binding motif protein 24 (RBM24) is a key regulator of the alternative splicing of mRNA during cardiomyogenesis and sarcomerogenesis. The functional region of RBM24 that mediates cardiac development in humans remains to be elucidated. In this thesis project, I used human embryonic stem cells (hESCs) as a model system and eliminated two RBM24 regions using the CRISPR/Cas9 system to functionally characterize the RBM24 RRM domain. Although cardiomyocytes (CMs) derived from two types of mutant lines were still able to induce a normal heartbeat, CMs derived from the ∆RRM-/- mutants exhibited a disorganized sarcomeric structure and abnormal mitochondrial morphology. In contrast, the ∆Exon2-/- mutants produced a well-organized sarcomeric structure, with a normal CM size and mitochondrial structure. Considered together, the data presented herein reveal that the RBM24 RRM domain is essential for ensuring a normal sarcomeric structure in hESC-derived CMs. These findings not only represent some evidence of the importance of the RBM24 RRM domain, they also suggest that RBM24 may regulate mitochondrial functions in human CMs. Future experiments will involve the application of RNA sequencing to further characterize the molecular mechanism underlying the effects of the RRM domain on sarcomerogenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T06:14:36Z (GMT). No. of bitstreams: 1
ntu-107-R05b21028-1.pdf: 20097862 bytes, checksum: 82e377a5bbb9e695920a7f69c39a8450 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Introduction 1
1. Application of human pluripotent stem cells 1
2. Sarcomerogenesis 2
3. Overview of RNA-binding motif protein 24 3
3.1 RNA-binding motif proteins 3
3.2 Introduction of RNA-binding motif protein 24 5
Materials and Methods 8
Human embryonic stem cell culture and Targeting strategy 8
Transfection of CRISPR/Cas9 plasmid and SURVEYOR assay 9
Western blot 10
Cardiac differentiation 10
Immunofluorescence staining 11
TEM samples preparation and fixation 12
Statistical analysis 13
Results 14
Elimination of RBM24 in human embryonic stem cell 14
Pluripotency and cellular differentiation in the two types of RBM24 knockout lines 15
Sarcomere structure of RBM24 mutant cardiomyocytes 16
Sizes of cardiomyocytes and nuclei in RBM24 mutant lines 18
Proliferation rate of RBM24 mutant cardiomyocytes 19
Knockout of the RRM domain of RBM24 might affect mitochondria in cardiomyocytes 19
Discussion 21
References 23
Tables &Figures 31
Table 1. sgRNA primers 31
Table 2. RBM24 PCR primers for genotyping 32
Table 3. Antibodies used for immunostaining/western blot 33
Table 4. Amino acid sequence prediction 35
Figure 1. Elimination different region of RBM24 in hESCs by using CRISPR/Cas9 system. 37
Figure 2. Elimination different region of RBM24 has no effect on pluripotent markers NANOG and OCT4. 38
Figure 3. RBM24 mutant lines expressed MYH6:mCherry after differentiation into cardiomyocytes. 39
Figure 4. Z-line structure of RBM24 mutant cardiomyocytes. 41
Figure 6. The transmission electron microscopy images of sarcomere structure. 45
Figure 7. Quantification of cardiomyocyte size in the RBM mutant lines. 46
Figure 8. Mitochondrion morphology in mutant cardiomyocytes. 47
Figure 9. The proliferation rate of RBM24 mutation cardiomyocyte. 49
Supplemental Tables &Figures 50
Table S1. Raw data of cardiomyocyte cell size 50
Table S2. Raw data of cardiomyocyte nuclei size 51
Table S3. Raw data of cardiomyocyte proliferation rate 53
Figure S1. SURVEYOR assay for testing RBM24 SgRNA targeting efficiency. 54
Figure S2. Genotyping results of RBM24 mutant lines. 55
Figure S3. The organized z-disc structure presented on differentiation day30 RRM domain elimination cardiomyocytes. 56
Figure S4. Instruction of cell size and nucleus size. 57
dc.language.isoen
dc.subjectRNA結合模組蛋白24zh_TW
dc.subjectCRISPR/Cas9系統zh_TW
dc.subject心臟性分化zh_TW
dc.subject肌節生成zh_TW
dc.subject心肌細胞zh_TW
dc.subject人類全能幹細胞zh_TW
dc.subjectRRM結構域zh_TW
dc.subjecthuman pluripotent stem cellen
dc.subjectsarcomerogenesisen
dc.subjectCRISPR/Cas9 systemen
dc.subjectRRM domainen
dc.subjectcardiomyocyteen
dc.subjectRNA-binding motif protein 24en
dc.subjectcardiac differentiationen
dc.title利用人類多能胚胎幹細胞衍生之心肌細胞探討RBM24之功能zh_TW
dc.titleFunctional Study of RNA-Binding Motif Protein 24 in Human Pluripotent Stem Cell-Derived Cardiomyocytesen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳彥榮(Yan-Rung Chen),李士傑(Shyh-Jye Lee),陳文彬(Wen-Pin Chen)
dc.subject.keyword人類全能幹細胞,RNA結合模組蛋白24,RRM結構域,心肌細胞,肌節生成,心臟性分化,CRISPR/Cas9系統,zh_TW
dc.subject.keywordhuman pluripotent stem cell,RNA-binding motif protein 24,RRM domain,cardiomyocyte,sarcomerogenesis,cardiac differentiation,CRISPR/Cas9 system,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201804112
dc.rights.note有償授權
dc.date.accepted2018-09-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
19.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved