請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7190
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳秀熙(Hsiu-Hsi Chen) | |
dc.contributor.author | Sih-Han Liao | en |
dc.contributor.author | 廖思涵 | zh_TW |
dc.date.accessioned | 2021-05-19T17:40:06Z | - |
dc.date.available | 2024-08-27 | |
dc.date.available | 2021-05-19T17:40:06Z | - |
dc.date.copyright | 2019-08-27 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-14 | |
dc.identifier.citation | 1.Tang, A., et al., Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom Radiol (NY), 2018. 43(1): p. 13-25.
2.Registry., T.C., Cancer statistics. 2018. 3.Chang, M.H., et al., Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med, 1997. 336(26): p. 1855-9. 4.Chang, M.H., et al., Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: a 20-year follow-up study. J Natl Cancer Inst, 2009. 101(19): p. 1348-55. 5.Ministry of Health and Welfare, T., ROC. , Taiwan Public Health Report 2012. 2013. 6.Chiang, C.J., et al., Significant reduction in end-stage liver diseases burden through the national viral hepatitis therapy program in Taiwan. Hepatology, 2015. 61(4): p. 1154-62. 7.Surveillance group, D.g., Staging group, Surgery group, Local ablation group, TACE/TARE/HAI group, Target therapy/systemic therapy group, Radiotherapy group, Prevention group, Drafting group, Management consensus guideline for hepatocellular carcinoma: 2016 updated by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. J Formos Med Assoc, 2018. 117(5): p. 381-403. 8.Liver, E.A.f.t.S.o.t., EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol, 2018. 69(1): p. 182-236. 9.Heimbach, J.K., et al., AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology, 2018. 67(1): p. 358-380. 10.Omata, M., et al., Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int, 2017. 11(4): p. 317-370. 11.Leong, T.Y. and A.S. Leong, Epidemiology and carcinogenesis of hepatocellular carcinoma. HPB (Oxford), 2005. 7(1): p. 5-15. 12.Liaw, Y.F. and C.M. Chu, Hepatitis B virus infection. Lancet, 2009. 373(9663): p. 582-92. 13.Trepo, C., H.L. Chan, and A. Lok, Hepatitis B virus infection. Lancet, 2014. 384(9959): p. 2053-63. 14.Hui-Fang Hung, A.M.-F.Y., Ya-Chuan Wang, Hsiu-Hsi Chen, Stochastic model for hepatitis B virus infection through maternal (vertical) and environmental (horizontal) transmission with applications to basic reproductive number estimation and economic appraisal of preventive strategies. PharmacoEconomics, 2014. 29(12): p. 1063-1073. 15.Sung JL, C.D., Lai MY, Yu JY, Wang CY, Lee C, Chen S, Ko T, Epidemiological study on hepatitis B virus infection in Taiwan. Chin J Gastroenterol, 1984. 1(1): p. 1-9. 16.Chung, D.C., et al., Seroepidemiological studies on hepatitis B and D viruses infection among five ethnic groups in southern Taiwan. J Med Virol, 1988. 26(4): p. 411-8. 17.Hung, H.F. and H.H. Chen, Cost-effectiveness analysis of prophylactic lamivudine use in preventing vertical transmission of hepatitis B virus infection. Pharmacoeconomics, 2011. 29(12): p. 1063-73. 18.Lavanchy, D., Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat, 2004. 11(2): p. 97-107. 19.Chen, C.J. and H.I. Yang, Natural history of chronic hepatitis B REVEALed. J Gastroenterol Hepatol, 2011. 26(4): p. 628-38. 20.Chu, C.M. and Y.F. Liaw, Increased incidence of fulminant hepatic failure in previously unrecognized HBsAg carriers with acute hepatitis independent of etiology. Infection, 2005. 33(3): p. 136-9. 21.Lok, A.S., et al., Spontaneous hepatitis B e antigen to antibody seroconversion and reversion in Chinese patients with chronic hepatitis B virus infection. Gastroenterology, 1987. 92(6): p. 1839-43. 22.Chu, C.M., et al., Natural history of hepatitis B e antigen to antibody seroconversion in patients with normal serum aminotransferase levels. Am J Med, 2004. 116(12): p. 829-34. 23.Chu, C.M. and Y.F. Liaw, Predictive factors for reactivation of hepatitis B following hepatitis B e antigen seroconversion in chronic hepatitis B. Gastroenterology, 2007. 133(5): p. 1458-65. 24.Simonetti, J., et al., Clearance of hepatitis B surface antigen and risk of hepatocellular carcinoma in a cohort chronically infected with hepatitis B virus. Hepatology, 2010. 51(5): p. 1531-7. 25.Westbrook, R.H. and G. Dusheiko, Natural history of hepatitis C. J Hepatol, 2014. 61(1 Suppl): p. S58-68. 26.van de Laar, T.J., et al., Acute hepatitis C in HIV-infected men who have sex with men: an emerging sexually transmitted infection. Aids, 2010. 24(12): p. 1799-812. 27.Alric, L., et al., Genes of the major histocompatibility complex class II influence the outcome of hepatitis C virus infection. Gastroenterology, 1997. 113(5): p. 1675-1681. 28.Grebely, J., et al., The effects of female sex, viral genotype, and IL28B genotype on spontaneous clearance of acute hepatitis C virus infection. Hepatology, 2014. 59(1): p. 109-120. 29.Ge, D., et al., Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature, 2009. 461: p. 399. 30.Thomas, D.L., et al., Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature, 2009. 461: p. 798. 31.Cox, A.L., et al., Prospective Evaluation of Community-Acquired Acute-Phase Hepatitis C Virus Infection. Clinical Infectious Diseases, 2005. 40(7): p. 951-958. 32.Freeman, A.J., et al., Estimating progression to cirrhosis in chronic hepatitis C virus infection. Hepatology, 2001. 34(4 Pt 1): p. 809-16. 33.Lingala, S. and M.G. Ghany, Natural History of Hepatitis C. Gastroenterol Clin North Am, 2015. 44(4): p. 717-34. 34.Thein, H.H., et al., Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: a meta-analysis and meta-regression. Hepatology, 2008. 48(2): p. 418-31. 35.Huang, Y.T., et al., Lifetime risk and sex difference of hepatocellular carcinoma among patients with chronic hepatitis B and C. J Clin Oncol, 2011. 29(27): p. 3643-50. 36.Chen, T.H., et al., Ultrasound screening and risk factors for death from hepatocellular carcinoma in a high risk group in Taiwan. Int J Cancer, 2002. 98(2): p. 257-61. 37.Kuo, M.J., et al., Cost-effectiveness analysis of population-based screening of hepatocellular carcinoma: Comparing ultrasonography with two-stage screening. World J Gastroenterol, 2016. 22(12): p. 3460-70. 38.Beasley, R.P., et al., Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet, 1981. 2(8256): p. 1129-33. 39.Hsu, H.Y., et al., Baseline seroepidemiology of hepatitis B virus infection in children in Taipei, 1984: a study just before mass hepatitis B vaccination program in Taiwan. J Med Virol, 1986. 18(4): p. 301-7. 40.Beasley, R.P., et al., Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet, 1983. 2(8359): p. 1099-102. 41.Lin, D.B., et al., Immune status in preschool children born after mass hepatitis B vaccination program in Taiwan. Vaccine, 1998. 16(17): p. 1683-7. 42.Hung, H.F. and T.H. Chen, Probabilistic cost-effectiveness analysis of the long-term effect of universal hepatitis B vaccination: an experience from Taiwan with high hepatitis B virus infection and Hepatitis B e Antigen positive prevalence. Vaccine, 2009. 27(48): p. 6770-6. 43.Yu, M.L., et al., Huge gap between clinical efficacy and community effectiveness in the treatment of chronic hepatitis C: a nationwide survey in Taiwan. Medicine (Baltimore), 2015. 94(13): p. e690. 44.Chen, T.H., et al., Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer, 2004. 100(8): p. 1734-43. 45.Lai, M.S., et al., Type 2 diabetes and hepatocellular carcinoma: A cohort study in high prevalence area of hepatitis virus infection. Hepatology, 2006. 43(6): p. 1295-302. 46.Huang, S.F., et al., Metabolic risk factors are associated with non-hepatitis B non-hepatitis C hepatocellular carcinoma in Taiwan, an endemic area of chronic hepatitis B. Hepatol Commun, 2018. 2(6): p. 747-759. 47.Lu, S.N., et al., Thrombocytopenia as a surrogate for cirrhosis and a marker for the identification of patients at high-risk for hepatocellular carcinoma. Cancer, 2006. 107(9): p. 2212-22. 48.Yeh, Y.P., et al., Evaluation of abdominal ultrasonography mass screening for hepatocellular carcinoma in Taiwan. Hepatology, 2014. 59(5): p. 1840-9. 49.Chiang, C.J., et al., Cancer trends in Taiwan. Jpn J Clin Oncol, 2010. 40(10): p. 897-904. 50.Department of Statistics, M.o.I., Taiwan, ROC., Life expectancy at birth (2017). 2018. 51.Lee, Y.C., et al., Effects of screening and universal healthcare on long-term colorectal cancer mortality. Int J Epidemiol, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7190 | - |
dc.description.abstract | 背景
台灣在過去的四十年中藉由數個肝癌防治計畫的推行,使肝癌的發生率與死亡率由1990年代晚期到2000年代早期開始有逐步下降的趨勢。然而,此趨勢由於暴露於不同時續發展之肝癌防治計劃對於不同的年齡層以及在不同的地理區域是否具有一致性在過去並沒有深入地探討。釐清各肝癌防治計畫(包括新生兒全面注射B型肝炎疫苗、健保制度的實施與抗病毒藥物的使用)執行時點對於肝癌出生率以及死亡率的變化趨勢之影響與關係在預測未來肝癌造成的疾病負擔扮演重要的角色,亦有助於肝癌防治政策的訂立。 研究目標 本論文主要的研究目標包括以下三點 (1)運用統計模型結合台灣肝癌實證資料評估不同年齡層的肝癌死亡率隨時間變化的趨勢並釐清其來自於肝癌發生率與疾病死亡率的各別影響; (2)評估肝癌發生率、疾病致死率與死亡率隨時間變化的趨勢線受基礎疾病負擔 (截距項)、時間變化趨勢(斜率)以及三個轉折點(change point)對於疾病負擔隨時間演進的效果; (3)預測至2025年之肝癌發生率、致死率與死亡率隨時間變化的趨勢。 資料來源 用來估計統計模型參數值的實證資料來源為台灣的癌症登記檔與死因統計檔。收集由西元1979年到2016年肝癌每一年的發生個案數(發生率)與死亡個案數(死亡率),總追蹤期間橫跨台灣施行的三個主要肝炎防治計畫之期間,包括西元1984年開始實施的新生兒B型肝炎疫苗的注射、1995年開始執行的全民健保計劃以及2004年開始推行的抗病毒藥物治療計劃。 研究方法 本研究根據不同年齡層與縣市別依序將肝癌死亡率之時間變化趨勢分解成為由出生率與死亡率之影響。研究中發展了一套以貝氏架構為基礎之卜瓦松迴歸模型來評估肝癌發生率與疾病致死率的變化對於死亡時間趨勢在三個肝癌防治計劃開始施行的轉折點的影響程度。研究中亦發展貝氏階層趨勢線轉折點分析統計模型並運用於評估由基礎疾病負擔、時間變化趨勢,與轉折點之一連串因果特性下對於不同年齡層與20個縣市區域在肝癌出生率、疾病致死率與死亡率的影響。 結果 在分解不同年齡層的肝癌死亡率後,研究結果顯示雖然在全年齡層中肝癌疾病致死率皆一致性的下降,但對於肝癌發生率中,<30歲、30-49歲以及50-69歲這三個年齡層的發生率皆持續下降,但是≥70歲這個年齡層的發生率則未有下降趨勢。以卜瓦松迴歸模型為基礎架構,本研究發展出一個統計模型以將肝癌死亡率隨時間變化的趨勢分解為來自於發生率與致死率的影響。我們擷取1979年到2013年30歲到84歲的肝癌死亡率與發生率評估肝癌死亡率歸因比例,並以三個肝癌防治計畫開始施行的時間點作為趨勢線的轉折點,將整個追蹤時期(1979-2013年)分作1979-1983年(時期1)、1984-1994年(時期2)、1995-2003年(時期3)和2004-2013年(時期4)。在30-49歲年齡層中,時期4的整體死亡率相較於時期1減少42.3%(95%信賴區間: 38.3-46.0%);此死亡率之變化可歸因於發生率(增加51.3% (95%信賴區間: 47.2-55.4%))和致死率(減少71.9%(95%信賴區間: 68.8-74.8%))。以50-69歲年齡層來看,時期4的整體死亡率相較於時期3減少22.8%(95%信賴區間: 21.5-24.1%);死亡率的變化歸因於發生率的變化為減少10.7%(95%信賴區間: 9.3-12.1%),此效應源於抗病毒藥物的使用對於降低肝癌發生之成效。以≥70歲年齡層來看,時期4的整體死亡率相較於時期2增加41.0%(95%信賴區間: 39.0-43.0%);即使疾病致死率之歸因比為減少47.7%(95%信賴區間: 45.3-50.0%),但發生率增加達69.2%(95%信賴區間: 68.2-70.1%),以致於老年族群的死亡率持續上升。 本研究進而運用貝氏階層合併轉折點分析之統計模型,評估三個肝癌防治計畫對於肝癌死亡率、發生率與致死率的個別效果以及作用於各縣市的效果,接著預測到西元2025年時,不同年齡層與不同縣市的變化。根據預測的結果,在西元2025年時,<30歲、30-49歲、50-69歲以及≥70歲這四個年齡層的發生率分別為:男性為每十萬人0.41(95%信賴區間: 0.29-0.54)、17.9(95%信賴區間: 16.1-20.0)、110.0 (95%信賴區間: 99.8-120.8)和314.9 (95%信賴區間:285.9-346.8);女性為每十萬人0.26 (95%信賴區間: 0.16-0.39)、2.85 (95%信賴區間: 2.36-3.40)、30.1 (95%信賴區間: 26.7-34.0)和183.7 (95%信賴區間: 163.8-205.1)。而<30歲、30-49歲、50-69歲以及≥70歲這四個年齡層的死亡率分別如下:男性為每十萬人0.08 (95%信賴區間: 0.05-0.11)、9.9 (95%信賴區間: 9.1-10.8)、69.1 (95%信賴區間: 65.0-73.4)和274.1 (95%信賴區間: 257.1-291.8);女性為每十萬人0.09 (95%信賴區間: 0.05-0.17)、1.5 (95%信賴區間: 1.2-1.8)、17.9 (95%信賴區間: 16.4-19.5)和 165.4 (95%信賴區間: 153.2-178.2)。在2025年,整體致死率的預測值為0.60 (95%信賴區間: 0.42-0.82)。 結論 本研究藉由貝氏卜瓦松的統計模型之架構發展用於評估三個肝癌防治計劃對於發生率和致死率影響之效果。而貝氏階層趨勢轉折點分析之統計模型則運用於預測到西元2025年的肝癌疾病負擔。本研究結果對於不同的年齡層與縣市別在未來制訂個別的肝癌防治計畫可提供新的實證視角,並據以來針對年齡與區域之特性發展肝癌防治策略,以期達成肝癌防治之目的。 | zh_TW |
dc.description.abstract | Background
After a series of prevention programs of hepatocellular carcinoma (HCC) over four decades, the overall incidence and mortality of HCC have started to decline between the late 1990s and the early 2000s in Taiwan. However, whether such declining trends of incidence and mortality have the same pattern by age groups and geographic areas is still elusive. Elucidating the time trends of both incidence and mortality in relation to these prevention programs play an important role in predicting the disease burden of HCC for decision-makers. Aims This thesis aimed to (1) report and assess the respective contributions of both time trends in incidence and case-fatality rate to the time trend of mortality by different age groups with empirical data and the modelling approach; (2) assess the effects of baseline (intercept), gradient (slope), and three change-point on time trends of incidence, case-fatality rate, and mortality; (3) predict three time trends of incidence, case-fatality rate, and mortality rate until 2025. Data Sources Empirical data used for estimating the parameters of the underlying model were derived from national vital statistics on incident cases of and deaths from HCC between 1979 and 2016 spanning three main interventions, mass vaccination, national health insurance, and antiviral therapy commencing from 1984, 1995, and 2004 (three change-points), respectively. Methods The empirical time trends of mortality were decomposed into both of incidence and case-fatality by age groups and geographic areas. We then developed a Bayesian mortality decomposition Poisson regression model to estimate the attributable proportion of incidence and case-fatality contributing to mortality due to three change-points of intervention programs. Bayesian hierarchical change-point models were proposed to model a cascade of the impacts from baseline values, gradients, and change-point on incidence, case-fatality, and mortality with respect to four age groups and 20 geographic areas. Results Based on Poisson regression underpinning, a statistical method was developed to decompose the trend change in mortality into the proportions attributable to incidence and case-fatality. The HCC mortality and incidence of individuals aged 30 to 84 years between 1979 to 2013 was extracted to evaluate the attributable proportion. Based on the time trends of HCC mortality and incidence incorporated with the time points for the implementation of interventions, the changing points were set in 1984, 1995 and 2004. 1979 to 1983, 1984 to 1994, 1995 to 2003 and 2004 to 2013 were defined as Period 1, 2, 3 and 4. The overall mortality reduction for Period 4 compared with Period 1 was -42.3% (95% CI: -46.0 to -38.3%) in the middle-aged group (30-49 years). When the mortality change was separated into the impact of incidence and survival, the results showed an increase in +51.3% (95% CI: 47.2 to 55.4%) attributable to incidence which was overwhelmed by a reduction in case-fatality rate (-71.9%, 95% CI: -74.8 to -68.8%). The overall mortality reduction for Period 4 compared with Period 3 was -22.8% (95% CI: -24.1 to -21.5%) in the middle-age group (50-69 years). This was separated into the proportion attributable to incidence and survival, which showed a reduction by -10.7% (95%CI: -12.1 to -9.3%) in HCC incidence during the period of national viral hepatitis therapy program. The change in HCC mortality for Period 4 compared with Period 2 was +41.0% (95% CI: 39.0 to 43.0%) in the old-age group. When further decomposing the mortality change for the elders into the proportion attributable to incidence and case-fatality, the results showed a reduction by -47.7% (95% CI: -50.0 to -45.3%) in HCC deaths due to improved survival after universal health care implementation. However, the efficacy was compromised by the increase in incidence rate (+69.2%, 95% CI: 68.2 to 70.1%) in the old age group. Using significant impacts of three intervention programs at individual and county level estimated by using Bayesian hierarchical change-point model, time trends of incidence until 2025 were predicted as 0.41 (95%CI: 0.29-0.54), 17.9 (95%CI: 16.1-20.0), 110.0 (95%CI: 99.8-120.8), and 314.9 (95%CI: 285.9, 346.8) per hundred thousand for < 30, 30-49,50-69, and ≥ 70 years for male and as 0.26 (95%CI: 0.16-0.39), 2.85 (95%CI: 2.36-3.40), 30.1 (95%CI: 26.7-34.0), and 183.7 (95%CI: 163.8-205.1) per hundred thousand for < 30, 30-49,50-69, and ≥ 70 years for female, respectively. For mortality, time trends until 2025 were predicted as 0.08 (95%CI: 0.05-0.11), 9.9 (95%CI: 9.1-10.8), 69.1 (95%CI: 65.0-73.4), and 274.1 (95%CI: 257.1-291.8) per hundred thousand for < 30, 30-49,50-69, and ≥ 70 years for male and as 0.09 (95%CI: 0.05-0.17), 1.5 (95%CI: 1.2-1.8), 17.9 (95%CI: 16.4-19.5), and 165.4 (95%CI: 153.2-178.2) per hundred thousand for < 30, 30-49,50-69, and ≥ 70 years for female, respectively. For overall fatality, time trends until 2025 were predicted as 0.60 (95%CI: 0.42-0.82). Conclusions Bayesian Poisson were developed here to assess the respective contributions of three main prevention program to incidence and case-fatality and Bayesian hierarchical change-point models were used to predict the disease burden of HCC until 2025. These findings have significant implication for providing a new insight into health care planning for prevention of HCC by different age groups and different counties. | en |
dc.description.provenance | Made available in DSpace on 2021-05-19T17:40:06Z (GMT). No. of bitstreams: 1 ntu-108-R06849018-1.pdf: 8665484 bytes, checksum: ce0280a05a1dc0ca4d50c911f9728677 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract iv Chapter 1. Introduction 1 Chapter 2. Literature review 4 2.1 Literature review on biological background of hepatocellular carcinoma 4 2.1.1 The epidemiology of hepatocellular carcinoma 4 2.1.2 The natural history of hepatitis B infection 4 2.1.3 The natural history of hepatitis C infection 6 2.1.4 The disease progression of hepatocellular carcinoma 7 2.2 Literature review on the preventive strategies for hepatocellular carcinoma in Taiwan 8 2.2.1 Universal hepatitis B vaccination program 8 2.2.2 National viral hepatitis therapy program 9 2.2.3 Abdominal ultrasonography screening for hepatocellular carcinoma 11 Chapter 3. Material and Methods 14 3.1 Empirical data 14 3.2 Variable definition 14 3.3 Statistical analysis 15 3.4 Mortality decomposition method 17 3.5 Bayesian hierarchical change-point model 19 3.5.1 Model specification 19 3.5.2 Estimating procedure 23 Chapter 4. Results 25 4.1 Descriptive analysis 25 4.1.1 Time trend of HCC 25 4.1.2 Geographic variation in HCC mortality, incidence and case fatality in Taiwan 27 4.1.3 Geographic distribution of chronic hepatitis B and C in Taiwan 28 4.2 Attributable proportion of HCC mortality 29 4.3 Estimated results of Bayesian change-point regression 30 4.4 Predictive distribution of HCC chronological trend 33 Chapter 5. Discussion 37 References 45 Figures 49 Figure 1.1 The timeline of healthcare policies 49 Figure 3.5.1 Bayesian directed acyclic graphic model of change-point regression for HCC incidence 50 Figure 4.1.1 Crude chronological trend of HCC incidence, mortality and case-fatality rate from 1979 to 2017 51 Figure 4.1.2 Crude chronological trend of HCC mortality in four counties from 1985 to 2017 (0-29 years) or 1979 to 2017 (30-84 years) 52 Figure 4.1.3 Crude chronological trend of HCC incidence in four counties from 1979 to 2016 (0-84 years) 56 Figure 4.1.4 Crude chronological trend of HCC case-fatality in four counties from 1985 to 2016 (0-84 years) 60 Figure 4.1.5 Chronological trend of HCC incidence, mortality and case-fatality rate for the population aged 0-29 years 61 Figure 4.1.6 Chronological trend of HCC incidence, mortality and case-fatality rate for the population aged 30-49 years 62 Figure 4.1.7 Chronological trend of HCC incidence, mortality and case-fatality rate for the population aged 50-69 years 63 Figure 4.1.8 Chronological trend of HCC incidence, mortality and case-fatality rate for the population aged 70-84 years 64 Figure 4.1.9 Geographic variation of HCC mortality, incidence and case fatality in Taiwan 65 Figure 4.1.10 Geographic distribution of chronic hepatitis B and C prevalence in 2014 67 Figure 4.4.1 Predicted chronological trend of HCC incidence from 1983 to 2025 (predicted) 68 Figure 4.4.2 Rank of HCC incidence from 1985 to 2025 (predicted) by County 72 Figure 4.4.3 HCC incidences from 1985 to 2025 (predicted) by county 75 Figure 4.4.4 Predicted chronological trend of HCC case fatality from 1985 to 2025 (predicted) 77 Figure 4.4.5 Rank of HCC case fatality by county from 1985 to 2025 (predicted) 78 Figure 4.4.6 HCC case fatality by county from 1985 to 2025 (predicted) 79 Figure 4.4.7 Predicted chronological trend of HCC mortality from 1985 to 2025 (predicted) 80 Figure 4.4.8 Rank of HCC mortality from 1985 to 2025 (predicted) by County 84 Figure 4.4.9 HCC mortalitys from 1985 to 2025 (predicted) by county 87 Figure 4.4.10 Plots on the estmated results of HCC incidnce from 1985 to 2025 (predicted) by age group 89 Figure 4.4.11 Plots on the estmated results of HCC incidnce from 1985 to 2025 (predicted) by county 91 Figure 4.4.12 Plots on the estmated results of HCC case-fatality from 1985 to 2025 (predicted) by county 93 Figure 4.4.13 Plots on the estmated results of HCC mortality from 1985 to 2025 (predicted) by age group 94 Figure 4.4.14 Plots on the estmated results of HCC mortality from 1985 to 2025 (predicted) by county 96 Tables 98 Table 4.1.1. Age-specific incidence rates of HCC cross-tabulated by period in Taiwan from 1979 to 2016 to derive the birth-cohort-specific rates in the diagonal matrix 98 Table 4.1.2. Age-specific mortality rates of HCC cross-tabulated by period in Taiwan from 1979 to 2017 to derive the birth-cohort-specific rates in the diagonal matrix 99 Table 4.1.3. Characteristics HCC incident and mortality cases of the Taiwan cohort from 1979 to 2016* 100 Table 4.2.1 Attributable proportions (APs) of HCC mortality: overall AP and separate AP estimates for respective independent effect of case-fatality rate (APc) and incidence (APi), controlling for age and gender 102 Table 4.3.1 Estimated results on Bayesian change-point regression for HCC incidence 103 Table 4.3.2 Estimated results on Bayesian change-point regression for HCC incidence incorporating the county level covariates of HBV and HCV prevalence 107 Table 4.3.3 Estimated results on Bayesian change-point regression on HCC case fatality 109 Table 4.3.4 Estimated results on Bayesian change-point regression for HCC mortality 110 Table 4.3.5 Estimated results on Bayesian change-point regression for HCC mortality incorporating the county level covariates of HBV and HCV prevalence 114 Table 4.4.1 Empirical and predicted HCC incidence (per 100,000) by county from 1985 to 2025 (predicted) 116 Table 4.4.2 Empirical and predicted HCC case fatality rate by county from 1985 to 2025 (predicted) 118 Table 4.4.3 Empirical and predicted HCC mortality by county from 1985 to 2025 (predicted) 119 | |
dc.language.iso | en | |
dc.title | 貝氏統計模型應用於評估及預測肝癌發生率、致死率與死亡率 | zh_TW |
dc.title | Bayesian Statistical Models for Assessing and Predicting Incidence, Case-fatality, and Mortality of Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 簡國龍(Kuo-Liong Chien) | |
dc.contributor.oralexamcommittee | 陳健弘(Chien-Hung Chen),陳祈玲(Chi-Ling Chen) | |
dc.subject.keyword | 肝癌,死亡率,發生率,致死率,貝氏卜瓦松,貝氏階層趨勢轉折點, | zh_TW |
dc.subject.keyword | hepatocellular carcinoma,mortality,incidence,case-fatality,Bayesian Poisson,Bayesian hierarchical change-point model, | en |
dc.relation.page | 120 | |
dc.identifier.doi | 10.6342/NTU201903137 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
dc.date.embargo-lift | 2024-08-27 | - |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 8.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。