請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃美嬌(Mei-Jiau Huang) | |
| dc.contributor.author | Jiun-Sung Huang | en |
| dc.contributor.author | 黃鈞淞 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:14:21Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.copyright | 2018-09-25 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-09-18 | |
| dc.identifier.citation | 文獻參考
[1] Y. Lan, A. J. Minnich, G. Chen, and Z. Ren (2010), “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach,” Advanced Functional Materials, vol. 20, no. 3, pp. 357-376. [2] L. D. Hicks and M. S. Dresselhaus (1992), “Effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, vol. 47, no. 19, pp. 12727-12731. [3] L. D. Hicks and M. S. Dresselhaus (1993), “Thermoelectric figure of merit of a one-dimensional conductor,” Physical Review B, vol. 47, no. 24, pp. 16631-16634. [4] G. Chen, S. Q. Zhou, D. Y. Yao, C. J. Kim, X. Y. Zheng, Z. L. Liu, and K. L. Wang(1998), “Heat Coduction in Alloy-Based Superlattices,” 17th International Conference on Themoelectircs, pp. 202-205. [5] S. T. Huxtable, A. R. Abramson, C. L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke(2002), “Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices,” Applied Physics Letters, vol. 80, no. 10, pp. 1737-1739. [6] D. Li, Y. Wu, R. Fan, P. Yang, and A. Majumdar(2003) “Thermal conductivity of Si/SiGe superlattices nanowires ,” Applied Physics Leters, vol. 83, no. 15, pp. 3186-3188. [7] P. L. Kapitza, The Study of Heat Transfer in Helium II, Collected Papers of P. L .Kapitza, 1941, pp. 581-624. [8] I. M. Khalatnikov, Introduction to the Theory of Superfluidity, Z. E. T. Fiz. 22, Benjamin, 1952, ch. 23, pp. 138-146. [9] E. T. Swartz and R. O. Pohl (1989), “Thermal Boundary Resistance,” Reviews of Modern Physics. vol. 61, no. 3, pp. 605-668. [10] R. J. Stevens, P. M. Norris and L. V. Zhigilei, “Molecular Dynamics Study of Thermal Boundary Resistance: Evidence of Strong Inelastic Scattering Transport Channels, ” . ASME International Mechanical Engineering Congress and Exposition, Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology, Nov 2004, pp. 37-46. [11] P. K. Schelling, S. R. Philpot, and P. Keblinski (2002), “Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation” Applied Physics Letters, vol. 80, no. 14, pp. 2484-2486. [12] N. A. Roberts and D. G. Walker (2010), “Phonon Wave-Packet Simulations of Ar/Kr Interfaces,” Journal of Applied Physics, vol. 108, no. 12, pp. 1-7. [13] S. Ju and X. Liang (2012), “Thermal rectification and phonon scattering in silicon nanofilm with cone cavity,” Journal of Applied Physics, vol. 112, no. 5, pp. 054312-1-054312-5. [14] J. V. Goicochea, B. Michel, and C. Amon, “Molecular dynamics simulations of oblique phonon scattering at semiconductor interfaces,” 3rd International Conference on Thermal Issues in Emerging Technologies Theory and Applications, May 2010, pp. 111-116. [15] L. Sun and J. Y. Murthy, “Molecular Dynamics Simulation of Phonon Scattering at Rough Semiconductor Interfaces,” 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, May 2008, pp. 1078-1086. [16] L. Sun and J. Y. Murthy (2010), “Molecular Dynamics Simulation of Phonon Scattering at Silicon/Germanium Interfaces,” Journal of Heat Transfer, vol. 132, pp. 102403-1~102403-8. [17] Y. Tong(2010), Molecular Dynamics Study of Mechanical Properties of Bi2Te3 Thermoelectric Material (Doctor dissertation), Engineering Structure and Mechanics, Wuhan University of Technology. [18] F. H. Stillinger and T. A. Weber (1985), “Computer simulation of local order in condensed phases of silicon”, Physical Review B, vol. 31, pp. 5262-5271. [19] R. J. Stevens, L. V. Zhigilei, and P. M. Norris (2007), “Effect of temperature and disorder on thermal boundary conductance at solid-solid interface: Nonequilibrium molecular dynamics simulations”, International Journal of Heat and Mass Transfer, vol. 50, pp. 3977-3989. [20] S. G. Volz, J. B. Saulnier, G. Chen, and P. Beauchamp (2000), “Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques,” Microelectronics Journal, vol. 31, pp. 815-819. [21] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford Science Publications, 1987. [22] S. Nosé (1984), “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of Chemical Physics, vol. 81, no. 1, pp. 511-519. [23] S. Nosé (1984), “A molecular dynamics method for simulations in the canonical ensemble,” Molecular Physics, vol. 52, no. 2, pp. 255-268. [24] W. G. Hoover (1985), “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review A, vol. 31, no. 3, pp. 1695-1697. [25] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak (1984), “Molecular dynamics with coupling to an external bath,” The Journal of Chemical Physics, vol. 81, no. 8, pp. 3684-3690. [26] P. Jund and R. Jullien (1999), 'Molecular-dynamics calculation of the thermal conductivity of vitreous silica,' Physical Review B, vol. 59, no. 21, pp. 13707-13711. [27] H. Askes and E. C. Aifantis (2011), 'Gradient elasticity in statics and dynamics: An overview of formulations,length scale identification procedures, finite element implementationsand new results, 'International Journal of Solids and Structures, vol 48, pp. 1962–1990. [28] N.A.Fleck, G.M.Muller, M.F.Ashby, J.W.Hutchinson (1994), ”Strain gradient Plasticity: theory and experiment,” Acta Metallurgica et Materialia, vol. 42, no. 2, pp. 475-487. [29] R. D. Mindlin, Micro-structure in Linear Elasticity, Archive for Rational Mechanics and Analysis, 1964, pp.51-78. [30] Z. T. Tian, B. E. White Jr, and Y. Sun (2010), 'Phonon wave-packet interference and phonon tunneling based energy transport across nanostructured thin films, 'Applied Physics Letters, vol. 96, pp. 263113. [31] L. T. Kong (2011), 'Phonon dispersion measured directly from molecular dynamics simulations,' Computer Physics Communications, vol. 182, pp. 2201–2207. [32] L.D. Landau and E.M. Lifshitz, Physique Statistique, 3rd edition, MIR, Moscow, 1984. [33] C. Campañá and M. H. Müser (2006), “Practical Green’s function approach to the simulation of elastic semi-infinite solids,” Physical Review B, vol. 74, no. 7, pp. 075420. [34] V. K. Tewary (1973), “Green-function method for lattice statics,” Advances in Physics, vol. 22, no. 6, pp. 757–810. [35] L. T. Kong, G. Bartels, C. Campa˜n´, C. Denniston and M. H. M¨user (2009), 'Implementation of Green’s functions molecular dynamics: an extension to LAMMPS,' Computer Physics Communications, vol. 180, no. 6, pp. 1004-1010. [36] C. H. Liu (2015), An investigation of the thermal boundary resistance of the Si-Ge alloy interfaces in use of molecular dynamics simulations (Master Thesis), National Taiwan University. [37] J. Singh, Physics of semiconductors and their heterostructures, McGraw-Hill, 1993. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71904 | - |
| dc.description.abstract | 本論文之重點可分為兩部分,其中一部分為利用分子動力學模擬數值工具求得矽鍺聲子色散關係,而後進行波包實驗探討單介面及雙介面之穿透率;另一部分為推導理論模型,採用應力應變梯度模型推導出色散關係,並且利用此模型提出新的SGSG-AMM單介面穿透率模型,於雙介面中則與干涉理論之雙介面穿透率預測相比較。
在此研究中,矽及鍺原子間作用力是採用兼具二體及三體勢能的Stillnger-Weber勢能函數。利用晶格動力學於模擬中求得聲子色散關係,探討波向量 的聲子振動模態,發現縱波聲頻支原子振動方向皆為同一平面波;橫波聲頻支並非單純的SH波或SV波,而是兩者混合波,且不同的原子種類會有不同的平面波形,並且互不干擾的傳遞於晶格中。 在單介面波包實驗中波包由矽穿透至鍺區域,研究發現入射波之頻率為一分布範圍,不論縱波或橫波穿透過介面時皆為彈性散射(頻率範圍皆重疊),且穿透率隨著頻率增加而緩緩降低,在接近鍺德拜頻率時穿透率急遽下降,最後入射頻率分布範圍完全超過鍺德拜頻率時穿透率才為零。縱波在入射頻率超過鍺聲頻支德拜頻率時,出現聲頻支轉變為光頻支的極化改變;橫波則發現不同的偏振方向會影響著穿透率,因與介面處原子鍵結方向有關(當偏振方向與鍵結方向相同時則會有較大的穿透率)。 雙介面是由夾於矽材中間的鍺薄膜左右兩邊界所形成,探討的參數包括薄膜厚度及入射波數,發現穿透率會因薄膜厚度及入射的波數不同而有上下震盪,原因是因為穿透波干涉現象所造成,當干涉現象為建設性干涉則穿透率會較大,反之,破壞性干涉則會讓穿透率變小。干涉理論預測值在波數小時有不錯的準確度,但波數大時預測並不佳。 | zh_TW |
| dc.description.abstract | There are two parts in this study. The first part is about molecular dynamics simulation for the sake of obtaining the phonon dispersion relations of silicon and germanium based on the lattice dynamics and exploring numerically the transmissivity associated with a single Si-Ge interface and double Si-Ge interfaces. The second part is about theoretical models for predicting the dispersion relations and the transmissivity. The stress-gradient-strain gradient (SGSG) model is employed to describe the relation between the stress and the strain. The wave interference is employed to explain the observed transmissivity in the double-interfaces experiments.
The Stillnger-Weber potential function including two-body potential and three-body potential is employed in this study to describe the interatomic force. The phonon vibration modes along the direction are calculated. The found vibration mode associated with the acoustic longitudinal wave is a perfect plane wave. That of the transverse waves however is neither a simple shear horizontal wave (SH) nor a shear vertical wave (SV) but a mixed one; besides the vibration mode can be divided into two different plane waves that are travelling in the crystal independently. On the other hand, although the SGSG-AMM gives a better prediction of the transmissivity than the traditional AMM at frequencies near the Debye frequency, it fails to predict accurately the transmissivity at intermediate frequencies. The AMM model with the wave interference phenomenon can explain well why the transmissivity associated with the double interfaces varies and oscillates with the incident wave number and with the spacing distance of the two interfaces. However the quantitative accuracy of the AMM predictions is acceptable only for small wave numbers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:14:21Z (GMT). No. of bitstreams: 1 ntu-107-R05522317-1.pdf: 4080148 bytes, checksum: 7d3f2b526aafc834bc9ab5e5a4c6f373 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 III Abstract IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XIII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 1 1-3 研究動機與目的 4 1-4 LAMMPS軟體介紹 4 1-5 論文架構 5 第二章 分子動力學理論與數值方法 7 2-1 矽鍺晶體結構介紹 7 2-2 勢能函數 8 2-3 初始與邊界條件 10 2-3-1 初始位置與速度 10 2-3-2 週期性邊界條件 11 2-4 溫度控制方法 12 第三章 理論模型介紹 15 3-1 SGSG色散關係 15 3-2 SGSG-AMM穿透率模型 17 3-3 干涉理論雙介面穿透率預測 20 第四章 矽鍺材料之分子動態矩陣分析 23 4-1 聲子色散關係 23 4-2 收斂測試 25 4-3 原胞聲子色散關係 26 4-4 單位晶胞聲子色散關係 26 4-4-1 縱波偏振向量分析 27 4-4-2 橫波偏振向量分析 27 第五章 矽鍺介面穿透率研究 29 5-1 波包實驗方法 29 5-2 模擬系統 30 5-2-1 波包參數設置 31 5-2-2 原子平衡位置 31 5-2-3 穿透率計算 32 5-2-4 單向移動波包 33 5-3 單一介面穿透率 34 5-3-1 縱波穿透率 34 5-3-2 橫波穿透率 36 5-3-3 熱導比較 37 5-4 雙介面穿透率 38 5-4-1 縱波穿透率 39 5-4-2 橫波穿透率 41 第六章 結論與未來展望 42 6-1 結論 42 6-2 未來展望 43 文獻參考 44 圖表 48 附錄 A:分子動態矩陣 89 附錄 B:透過Green function求解力常數 91 | |
| dc.language.iso | zh-TW | |
| dc.subject | 分子動力學模擬 | zh_TW |
| dc.subject | 聲子色散關係 | zh_TW |
| dc.subject | 矽鍺介面 | zh_TW |
| dc.subject | 介面熱阻 | zh_TW |
| dc.subject | 穿透率 | zh_TW |
| dc.subject | Transmissivity | en |
| dc.subject | Phonon dispersion relation | en |
| dc.subject | Si-Ge interface | en |
| dc.subject | Thermal boundary resistance | en |
| dc.subject | Molecular dynamics | en |
| dc.title | 以分子動力學模擬研究矽鍺材料之介面穿透率 | zh_TW |
| dc.title | An investigation into the transmissivity of the Si-Ge interfaces in use of molecular dynamics simulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊嘉揚(Jia-Yang Juang),楊馥菱(Fu-Ling Yang),陳軍華(Chun-Hua Chen) | |
| dc.subject.keyword | 分子動力學模擬,聲子色散關係,矽鍺介面,介面熱阻,穿透率, | zh_TW |
| dc.subject.keyword | Molecular dynamics,Phonon dispersion relation,Si-Ge interface,Thermal boundary resistance,Transmissivity, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201804133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-09-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
