請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71901完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王凡 | |
| dc.contributor.author | Ching-Li Li | en |
| dc.contributor.author | 李景立 | zh_TW |
| dc.date.accessioned | 2021-06-17T06:14:14Z | - |
| dc.date.available | 2023-09-25 | |
| dc.date.copyright | 2018-09-25 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-09-19 | |
| dc.identifier.citation | [1] Web Application Testing”, 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, 13-17 March 2017. IEEE Xplore: 138-148, 18 May 2017.
[2] C. D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval. New York, NY, USA: Cambridge University Press, 2008. [3] Z. Harris, “Distributional Structure”, Word. 10 (2/3), 146–62, 1954. [4] G. Salton, C. Buckley, “Term-weighting Approaches in Automatic Text Retrieval”, IP & M 24(5):513–523, 1988. [5] S. H. Friedberg, A. J. Insel and L. E. Spence, Linear Algebra, 4th edition. Upper Saddle River, N.J: Pearson, 2002. [6] T. Yeh, T.-H. Chang, R. C. Miller, “Sikuli: Using GUI Screenshots for Search and Automation”, Proceedings of the 22nd annual ACM symposium on User interface software and technology (UIST '09). ACM, New York, NY, USA, 183-192, 2009. [7] Z. Peng, N. He, C. Jiang, Z. Li, L. Xu, Y. Li, Y. Ren, “Graph-Based AJAX Crawl: Mining Data from Rich Internet Applications”, Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering - Volume 03 (ICCSEE '12), Vol. 3. IEEE Computer Society, Washington, DC, USA, 590-594. , 2012. [8] C.-H. Yu, “Using Image Classification for Automatic Page Analysis on the Testing of Web Apps”, Master Thesis of Dept. Eletrical Engineering, National Taiwan University, Jan. 2018. [9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, “Backpropagation applied to handwritten zip code recognition”, Neural Computation, 1(4):541–551, Dec. 1989. [10] D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning representations by backpropagating errors”, Nature, 1986. [11] D. P. Kingma, J. B. Adam, “A Method for Stochastic Optimization”, ICLR 2015. [12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, “Going deeper with convolutions”, CoRR, abs/1409.4842, 2014. [13] A. Singhal, “Modern Information Retrieval: A Brief Overview,” IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35–43, 2007. [14] R. Ř. Uřek, P. Sojka, “Software Framework for Topic Modelling with Large Corpora,” in Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta, pp. 45–50, 2010. [15] N. Ketkar, “Deep Learning with Python,” Apress, Berkeley, 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71901 | - |
| dc.description.abstract | 為了確保網頁和行動裝置應用程式的品質,使用軟體測試技術來驗證系統是否有效。在自動軟體測試中,如果可以識別其中的元件會很有幫助。手動分析元件主題是一項耗時的工作。在之前的論文中,有通過文字標籤來識別元件主題的方法。我們提出了一種預測GUI元件主題的技術,它將圖像分類技術融入自然語言處理方法中。我們可以使用這項技術同時使用文字以及圖像屬性識別元件主題,並非只依賴文字屬性。只要將對網頁和行動裝置的所有元件進行爬蟲,並將其屬性記錄到文件中,便可使用該技術來判斷元件的主題。我們用python實作了這項技術並且作實驗。實驗表明,有著圖像分類技術輔助時,可以比原本的自然語言處理方法有更高的準確率。 | zh_TW |
| dc.description.abstract | For ensuring the quality of both web and mobile applications, software testing techniques are used to trace and observe whether the system is valid or not. In automatic software testing, it is helpful if the elements can be identified. Analyzing topic of elements manually is a time-consuming work. In the previous work, the topics of elements can be identified by the text tags. This paper presents a technique to predict the topics of GUI elements, which incorporate the image classification technology into the natural language processing method. With this technique, we can identify the topic of an element by its attributes, not only the text but also the image. All the elements of a web and mobile application are crawled and their attributes are recorded to a source file. Then we use the technology to judge the topics of elements. We implemented the technology with python and experiments showed that natural language processing approach can be improved when integrated with image classification. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T06:14:14Z (GMT). No. of bitstreams: 1 ntu-107-R05921103-1.pdf: 863496 bytes, checksum: d9be8be6618993e5560aa80df801544b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES v LIST OF TABLES vi Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Natural language processing 3 2.2 Image classification 7 Chapter 3 Approach 10 3.1 Source Files 10 3.2 Image classification 10 3.3 NLP 12 Chapter 4 Experiments 18 4.1 Image Classification Approach 19 4.2 NLP Approach 21 Chapter 5 Conclusions 23 REFERENCE 24 | |
| dc.language.iso | en | |
| dc.subject | 軟體測試 | zh_TW |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | 圖像分類 | zh_TW |
| dc.subject | image classification | en |
| dc.subject | natural language processing | en |
| dc.subject | software testing | en |
| dc.title | 使用自然語言處理與圖像分類技術預測圖形介面元件主題 | zh_TW |
| dc.title | Predicting the Topics of GUI Elements with both NLP and Image Classification Techniques | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳銘憲,戴顯權,張純明 | |
| dc.subject.keyword | 自然語言處理,圖像分類,軟體測試, | zh_TW |
| dc.subject.keyword | natural language processing,image classification,software testing, | en |
| dc.relation.page | 25 | |
| dc.identifier.doi | 10.6342/NTU201804139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-09-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 843.26 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
